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SUMMARY

During this research period, we concentrated our efforts in two areas. One was to continue our
previous investigation of coherent wave propagation in discrete random media. In addition to

providing a more rigorous model by considering nonspherical statistics for scatterers of arbitrary
Pshapes, we applied multiple scattering theory to study the frequency dependent effective properties

of different kinds of composites (electronic, elastic and acoustic). Such studies enable us to obtain

optimal designs of wave absorbing composite materials before conducting any expensive

experiment. For preliminary studies, an atmosphere containing aerosols can be modeled as a
composite; however, the particles are not stationary and the turbulence in the atmosphere does make

the problem even more complicated.

Secondly we began to investigate the incoherently scattered intensity as a result of the multiple

scattering of waves in discrete random media. Incoherent intensity becomes extremely important
when the magnitude of the second moment of the average wave field cannot be neglected.

Consequently, the incoherent intensity not only tells us more about the statistics of the discrete
random medium, but also it affects the qualities of the transmitted as well as the reflected signals.

Scattered intensities (coherent and incoherent) either from scatterers in a volume or from scatterers
£ on a surface (modeled as rough surface) were theoretically examined. The computed results for

backscattered intensity from scatterers compared favorably with those from recently observed
backscattering enhancement experiments.

In the following, we outline and summarize, based on the submitted and published papers in
either journals or conference proceedings, the work and the obtained results during this period and

also propose the tasks which should be pursued in the near future.
(a) We have demonstrated a scheme for computing the complex propagation characteristics of a

medium that is effectively anisotropic. For aligned nonspherical dielectric scatterers in free space,

there is a significant difference between the results ( for effective permittivity) for parallel and
perpendicular polarization of electromagnetic waves. However, the anisotropic effect for
spheroidal ice particles in air was not found to be significant when we varied the angle of incidence.

(b) We employed a more efficient scattering formalism using the scattered field, rather than an

earlier exciting field formalism which involves larger matrices. The new formalism is used to
compute the phase velocity and attenuation of composite media (circular as well as non-circular
scatterers of considerable concentrations) excited by either elastic SH or P and SVwaves. To

obtain the numerical results, the pair correlation function for "hard" disks using Monte Carlo

simulation was used.
(c) We applied multiple scattering theory to the design of microwave absorbing materials. The

scatterers considered were ferrite particles with high dielectric and magnetic loss tangents. Because
,." 1
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the size of the ferrite particles is very small compared to the microwave wavelength, we derived an
analytical expression to obtain the complex propagation constant for the composite in the long

wavelength limit.The simple formula is able to predict the effective properties of electionic
composites in which both scatterers and host materials can be lossy. In the Rayleigh regime, the
derived formula covers the volume fraction of scatterers from 0 - 100%. In addition, the
characteristics of millimeter and microwave absorbing composites, consisting of piezoelectric or

chiral polymer particles, were also examined in wide frequency bands.

(d) Backscattered intensities were studied analytically for spherical scatterers randomly distributed

on a plane excited by either a normally incident plane wave or a beam wave. Under these
circumstances, waves are essentially multiply scattered by a random rough surface. The formalism

used to obtain the backscattered intensities was examined by using the principle of conservation of
energy and considering both the coherent and the incoherent intensities. However, current results

do not cover nonspherical scatterers and the dense concentration cases which should be pursued

further.
(e) Earlier results for electromagnetic wave propagation in discrete random media assumed

spherical statistics for describing the spatial distribution of even nonspherical scatterers. We used
the Monte Carlo method to generate the appropriate pair correlation functions for nonspherical

scatterers (at the present'stage, prolate and oblate spheroids with different aspect ratios) which may

be either aligned or randomly oriented. The proper pair correlation function is then used to calculate
the propagation constants for waves traveling in a medium consisting of randomly and densely
distributed nonspherical scatterers. The propagation constant was later used to compute the

coherent and incoherent intensities. Considerable differences were found between the previous
results using various kinds of approximation for nonspherical statistics, and the current ones using
the Monte Carlo simulation.

(f) We developed a computational scheme to obtain numerical results for the second moment
(average intensity) of a wave field propagating in a medium consisting of randomly distributed

. scatterers which are not necessarily simple in shape. The formalism (propagator model) used in our
compuatation parallels the diagram method first proposed by Feynman and clearly shows the

various approximations made in the intensity calculations. The back and forth scattering between a
pair of scatterers, which has been neglected in the ladder approximation, automatically appears in
our formalism taking into account all the multiple scattering between two scatterers through the pair

correlation function. The computed scattered intensities in the forward direction compared very well
with those measured from microwave experiments. The widths and magnitudes of the

backscattered intensity peak compared favorably with those of optical experiments.

%-%

%."- 2

@ . ,.~d f%.v .@ ... ;... e, e..... . *, e ,_ .".e.e - ,.. . ,e * '",



LIST OF MANUSCRIPTS SUBMITTED OR PUBLISHED UNDER ARO SPONSORSHIP

DURING THE PERIOD

V. K. Varadan, V. V. Varadan, Y. Ma, and A. Lakhtakia, "Piezoelectric, ferrite and chiral polymer composites," in
Proceedings of Multiple Scattering of Waves in Random Media and Random Rough Surfaces, pp. 503-522, July,
1985.

Y. Ma, V. K. Varadan, and V. V. Varadan, "Scattering of acoustic beam waves by rough surfaces," in Proceedings of
Multiple Scattering of Waves in Random Media and Random Rough Surfaces, .pp. 695-700, July, 1985.

V. V. Varadan, V. K. Varadan, and Y. Ma, "Multiple scattering theory for acoustic, electromagnetic and elastic waves
in discrete random media," in Proceedings of Multiple Scattering of Waves in Random Media and Random Rough
Surfaces, pp.9 4 1 -952, July, 1985.

V. V. Varadan, Y. Ma, and V. K. Varadan, "Anisotropic dielectric properties of media containing aligned
nonspherical scatterers," IEEE Transactions on Antennas Propagation AP-33, 886-890, August, 1985.

V. K. Varadan, V. V. Varadan, and Y. Ma, "Multiple scattering of elastic waves by cylinders of arbitrary cross
section Hl. Pair correlated cylinders," Journal of the Acoustical Society of America 78(5), 1874-1878, November,
1985.

V. V. Varadan, Y. Ma, and V. K. Varadan, "Propagator model including multiple fields for discrete random media,"
Journal of the Optical Society of America A(2), 2195-2201, December, 1985.

V. K. Varadan, V. V. Varadan, Y. Ma, and W. F. Hall, "Design of ferrites impregnated plastics(PVC) as microwave
absorbers," IEEE Transactions on Microwave Theory and Techniques MTT-34, 251-258,February, 1986.

Y. Ma, A. H. Magnuson, V. K. Varadan, and V. V. Varadan, "Acoustic response of manganese nodule deposits,"
Geophysics 51, 689-698, March, 1986.

V. K. Varadan, Y. Ma and V. V. Varadan, "Multiple scattering of compressional and shear waves by fiber reinforced
composite materials," Journal of the Acoustical Society of America 80(t), 333-339, July, 1986.

V. V. Varadan, V. K. Varadan and Y. Ma, " EM wave propagation in discrete random media: nonspherical statistics,"
presented in the CRDEC Scientific Conference on Obscuration and Aerosol Research, July, 1986.

V. V. Varadan, V. K. Varadan and Y. Ma, "Multiple scattering of waves in random media containing nonspherical
scatterers,"in the Electromagnetic Wave Propagation Panel Symposium sponsored by AGARD, NATO, May, 1987.

V. V. Varadan, V. K. Varadan and Y. Ma, "Backscattering enhancement of waves in random media," presented in the
CRDEC Scientific Conference on Obscuration and Aerosol Research, June, 1987.

Y. Ma, V. V. Varadan and V. K. Varadan, "Average intensity scattered by densely distributed nonspherical particles,"

presented in the CRDEC Scientific Conference on Obscuration and Aerosol Research, June, 1987.

V. V. Varadan, V. K. Varadan, Y. Ma and W. A. Steele, "Effects of nonspherical statistics on EM wave propagaton

in discrete random media," Radio Science 22, 491-498, July-August, 1987.

Y. Ma, V. V. Varadan and V. K. Varadan, "Scattered intensity of a wave propagating in a discrete random medium,"
* Applied Optics, to appear.

3

%4 %



MUUFIPLE SCATTERIJNG OF WAVES BV RANDOM
MEDIA AND RANDOM ROUGH SURFACES
The Pennsylvania State University, 1985
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ABSTRACT

In many applications involving electromagnetic waves, it is desirable to design materials having
prescribed frequency-dependent reflection and tranimiso characteristics; at the same tim. they must
conform to restrictions on weight, structural properties and geometry. etc. Composite materials that
contain a distribution of inclusions of specific concentration, distributional statistics, geometry and
material properties, can often achieve the desired absorption characteristics while adhering to other
design restrictions. Because of economic and time constraints, the design of such composites must be
carried out theoretically. In this paper, the characteristics of millimeter and microwave absorbing
composites. consisting of piezoelectric.fernite or chiral polymer particles. are examined.

1. INTRODUCTION

To investigate the dynamic response of composite materials which ae formed as a combination
of two discrete phases, i.e., the inclusion (scatterer) and the matrix (host) phases, requires the use of
the multiple scattering theory whenever the volume fraction of the inclusion phase becomes even
moderately large, which is usually the cae for most commercial composites (e.g. carbon fiber or
boron fiber composites used in aerospace industry). In this paper, because of the variety of inclusion
phases (piezoelectric inclusions a,-e modeled as infinitely long cylinders which are tw dimensional

Sscattes while ferite and chra inclusions ame treated as due dimesoa speia scatterers) as wel

as the versatility of the exciting waves (elastic waves and electromagnetic waves which have
cylindrical or spherical wavefronts), my effort in trying to formulate a unified algorithm which is
suitable for various systems seems to be awkward. However, a general multiple scattering formalism.
without going into complicated details, is given also in this proceedings [Varadan et al., 1985c] and
can be used for a general reference. Nevertheless. the step-by- step derivations for any specific
problem can be found in our previous work [Varadan et al., 1980, 1984, 1985a, 1985b, 1986].

2. PIEZOELECTRIC MATERIALS

Ever since the discovery of the piezoelectric effect by Piem and Jacques Curie [Cady, 1946; Auld,
1973], materials possessing the relevant properties have been widely used in the fabrication of
transducers, sensors, films, resonators, etc. Piezoelectricity is the linear, reversible coupling between
the electromagnetic and the elastodynamic energies due to the displacement of charges. If a charge
density is created over the surface of a piezoelectric material volume, then internal sum and srain are
produced; conversely, the application of mechanical pressure creates a change in the surface charge
density, thereby launching an electromagnetic field. Materials which are piezoelectric are either crystals
endowed with misotropy, or they we ceramics with ferroelectric properties which can sustain a
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permanent charge polarisaion due to dielectric hysteresis. Single crystals are generally suitable for
very high frequencies, and, in quartz, elastic wave propagation has been observed at 125 GHz.
However, synthetic materials - principally, ferrocenmics like uniaxial BaTiO3 and lead zirconate
titanae (PZT) - have very strong electromagnetic-elastic coupling, and these new materials are
increasingly being put to use.

1. Constitutive relations for piezoelectric materials can be obtained by expressing the
bermodynamic internal energy in terms of macroscopic state variables such as strain, electric and
magnetic fields. With the assumption that herm the piezoelecric materials ae non-magnetdr, in mixed
dyadic/vector notation these relations take the form [Aud, 1973]

T - -e-E + cE: S. (2-1a)

D - £S.E + e:S. (2-1b)

B - o H. (2-1c)

where e is the third rank piezoelectric coupling tensor, €£ is the fourth rank stiffness tensor at
constant electric field and eS is the second rank permitivity tensor at constant srain and go is the
permeability of free space. The elastodynamic field variables are u, the particle displacement, T. the
stress tensor, and S. the strain tensor, whereas E, H, and B are the usual electromagnetic field vectors.

In a piezoelectric material, therefore, both the Navier equation and the four Maxwell's equations

CV.T . pto)2u (2-2)j
V .B - 0; V-D - Pc; VxE - jtoB; VxH - -jtoD, (2-3)

must be satisfied by the composite elastic-electromagnetic field subject to the constitutive equations (2-1).
In (2-2), p is the mass density, whereas in (2-3). Pe is the volume charge density. Although (2-I) - (2-3) are
general, all further discussion in this section is specialized to a cartesian (xI, x2 , x3) co-ordinate system,
with x, axis being the preferrd direction.Th fourth rank tensor €E is called the stiffness tensor, all elements of which must be positive. Note

that not all of its elements are independent of each other, and it turns out that (with the superscript E
omitted, henceforth) 4

Cijk - cklj - cjikJ - cijlk- QjkI - 12.3, (2-4)

further simplifications coming for transversely isotropic materials [Auld. 1973]. From thermodynamic
considerations it can also be shown that the piezoelectric coupling tensor is symmetric. Further, since the
stress tensor is symmetric

eijk - eikj. (2-5)

Confining the rmaining pat of this section to transversely (xl-x,2 ) isotropic media, it is convenient
to use an abbreviated index notation due to the particular symmetry of cijkl. The upper case letters I, J,
etc, will be used to denote

1 11

2 22
3 33
4 23,32
5 13,31
6 12,21
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Thus, cU is a 6 x 6 symmetric matrix with only five independent elements for a material with transverse
isotropy, and is given by

clI C12 C13 0 0 0
C12  C11  C13  0 0 0

CU C13  C13  C33  0 0 0 (2-6)
S 0 0 C44 0 0

o 0 0 0 44 0
0 0 0 0 0 C66

with C66- (cI 1 - c12Y " Similarly the piezoelectric coupling tensor e is written in the abbreviated
form as

I-0 0 0 0 0 %
0 0 0 e15 00 (2-7)/ e31 e31 e 33 000

which has three independent elements; and the permitivity tensor, after dropping the superscript S. as

,d.Cli 0 0 1
t;.- 0 I1 0 (2-8)
ij L0  0 C33]

which has two indep-ndent elements.
In order to solve boundary value problems, the appropriate surface conditions on -the particle

velocity v - {ai/tlu, the traction force T-n, and the tangential electric and magnetic fields nxE and
nxH must be satisfied, a being the unit outward normal to the relevant interface. Reflection and
transmission characteristics of planar, piezoelectric half-spaces were probably first examined by Kyarne
(1949; 1954], and have been dealt at great length by Auld (1973]. Scattering of elastic and
electromagnetic waves by transversely isotropic cylinders have been investigated by Moon (1970],
whose analysis has been applied by Lakhtakia et al. (1986a] to study the properties of cylindrical
gratings made of BaTiO3 cylinders.

Table 2-1 Comparison of stiffened and unstiffened elastic constatrts of BaTio 3 and PZT-5

,.PZT- $ BaTiO3  ,

CU Unstiffened Stiffened Unstiffened Stiffened
(x 10 10 N/m 2 )  (X 100 N/m 2 )  (x 10 I0 N/m 2 ) (x 1010 N/m 2 )

C11 12.6 12.9 15.0 15.2
c12 7.95 8.27 6.6 6.77
c13 8.41 7.25 6.6 5.92
C33  11.7 12.0 14.6 14.8
c44 2.3 4.22 4.4 5.68
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In many practical problems due to the enormous difference in the speed of propagation of acoustic
or elastic waves and electromagnetic waves, frequencies pertinent to the former ranging from a few
Here to 100 Nz are very low with respect to electromagnetic waves. Noting that B and H do not
explicitly appear in the constitutive equations, it can be assumed that the electromagnetic field reduces
to a quasi-static electric field at frequencies less than about 100 MHz. It is, nevertheless, important
that the distinction between static and quasi-static is retained. In the quasi-static approximation, one
may assume that the E field is irroational, noting that it is strictly so in the electrostatic case.

Assuming that the electric field is irrotational, it is possible eo write down

E (2-9a)

with 4 being a scalar potential. In which case, the magnetic displacement vector

B - 0, (2-9b)

by virtue of the fact that VxVt - 0. This implies an additional relationship between Vk and S via
(2-1b), and it can be shown that

I. o1 1 {8 / x1} -e 1 5 5, (2-10a)
-eIl (I{Mx2) - e15 S4, (2-10b)
"'33 {8a/x3l - e3l (S1 I S2) + e33 S3. -(2-10c)

Substitution of (2-10) in (2-1a) yields a stress-strain relationship for the transversely isouppic,
piezoelectric medium which does not involve the electromagnetic field explicitly in the quasi-static
approximation. Indeed, then it becomes possible to state that

T- e.Vt + Ec S - E: S. (2-11)

where the overbar above cE signifies piezoelectric stiffening, with its independent elements given by

Cl1 - €ll + (e312/e33 C33 - c3 3 + (e31 )2/e33  (.12a, b)

-12 " c1 2 + (e3 1)2 e3 3  c 13 - c 1 3 
+ e3 1 e3 3 lt 3 3  (2-1crd)

c44 - c44 + e15
2/ell (2-12e)

The stiffening can be considerable, especially in the coefficient c44 as Table 2-I indicates for
BaTiO 3 and PZT-5. In the quasi-static approximation, the appropriate surface conditions on the
particle velocity v - (a/at)u, the traction force T-m, the potential 4 and its normal derivative n-V
must be satisfied.

After the examination of the nature of piezoelectric materials, we are currently investigating the
damping characteristics as well as the phase velocity dispersion patterns of piezoelectric composites.
In obtaining die numerical results, multiple scattering formalism has been employed in solving the
effective wavenumber K (- KI +iK2 ) of the piezoelectic composites. The real part KI of K relates to
the phase velocity and the imaginay part K2 is proportional to the attenuation rate which also can be
converted to the physical dB scale if the sizes of the inclusions are given.

The piezoelectric composite considered in this paper is transversely isotropic piezoelectric
matera with properties given in Table 2-2 and the matrix used is soft rubber whose properties are
also shown in the same table. Results presented in Figures 1 and 2 are for SH wave incidence. The
results ftom die cOnesPOnding problem but for P and SV wave incidence are presented in Figure 3 and
4. However, the properties for such a case are given in Table 2-3.
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Table 2.2 Material Properties for Piezoelectric Composites (SH Wave Incidence)

Case I Case 2

P, (kg/m ) 6600 7000
3 1100 1000

c44 (N/nm) 8.5 x 109  8.S x 109

c4 (N/m2_) 7.0 x 107  7.0 x 108

? 15 (C/m 2) 11.6 11.6
ell (F/m) 300cc S6eo
e 11 (F/m) 6e 0  20et

Table 2-3 Material Properties for Piezoelectic Composites (P and SV Wave Incidence)

Matrix Inclusion

p (kgm3)_ 1100 5700
ci (N ) 16.6 x 100J, C1 2 (N/m 2) 7.66 a 1010

IN /m2 7.64 1
c3 1 (Colournb/ -4.4
t(dielectrc constant) 6 to
£33 1450 to
Lame' Constants (N/m2 )
Casel I. 6.93 x 10

8.91 X 108
Case 2 . 2.46 x 109

6.19 1 106
Cae 3 2.28A x 109

I 9.90 x 107
N Cae 4 IL 2.45 x 109

1.10 x 107

go- 8.854 x 10"12 Faradn IO .4x x I0"7 Henry/m

3. FERRITES

In spite of the long history of the preparation of ferrite materials, one aspect of the microwave
characteristics of ferrites. has particurly aroused the interest of researchers in recent days, i.e., the
understanding of the mechanism by which electromagnetic energy is dissipated in ferrites. The
presence of a high dielectic constant as well as a magnetic loss tangent in a ferrite gives rise to high
electromagnetic energy dissipation, which can be fruitfully utilized in the design of efficient
microwave absorbing composites.

In our previous work [Varadan et al., 1985b], the attenuation of intensity in composite materials
along the wave propagation direction has been shown to be proportional to the imaginary part of the
effective wavenumber K. In other words, by appropriately tailoring the ferrite composites, which in
this study is through grounding the sintered ferrite in a ball mill, and then mixing with another
material and moulded, we are able to predict the dispersion characteristics of the new material. In
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general, the dispersion characteristics depend on the effective wavenumber K. Although the selection
of the matrix material is quite important, the critical parameter in the design of ferrite composites isthe inclusion materia %

Generally speaking, the effective wavenumber K is determined through the T-matrix method
[Varadan & Varadan, 1980]. in which a transfer function for studying the wave scattering as well as
absorption characteristics of a single inclusion is considered. However. besides the response of a
single inclusion, the low porosity of ferrite composites introduces interactions among inclusions
when excited by microwaves and multiple scattering effects have to be included in the analysis.
Current efforts ar, therefore, directed toward the identification of several categories of ferrite
coimposites whose effective wavenumbers yield high damping coefficients in some specific microwave
bands.

Usually, the commercial ferrites with known dispersion curves are the first candidates for the
theoretical analysis. Any effort in the preparation of ferrite materials in improving the dispersion
patterns whose resonance phenomena highly enhance the attenuation of the composites is strongly
encouraged. In most cases, physical properties, in an effective manner, are able to be derived from the
effective wavenumber K of the composite materials. But unfortunately, only the effective quantity of
the product of e and p ie, e.<z>, can be inferred from the effective wavenumber K of ferrite
composites. Although the permittivity of ferrites can be simply obtained using the Lorenz.Lorentz 'p

formula (Frdhlich, 1949], there is no direct formula, at least in the current literature, which can be
employed to compute the permeability of ferrites. Therefore, the reason for not being able to derive an
exact formula for independent e and g is probably due to the complex dispersion pattern for the
permeability of ferrites.

For magnetized ferrites, the electromagnetic energy can be dissipated due to resonance absorption
(Bloembergen, 1950]. One notices that when the signal frequency coincides with the natural
precession frequency, maximum energy dissipation occurs. In an infinite medium, the precession
frequency is determined by an applied static magnetic field; therefore, it is natural not to expect any
precession frequency, and, hence, any significant absorption of microwave energy in an actual sample.
However. it is worth noting that an effective field always exists within a sample of finite size due to
demagnetizing effects associated with sample or crystalline boundaries and due to crystalline
anisotropy.

The absorption mechanism inherited from the effective field, referred to as domain rotation
resonance (Polder & Smit. 1953], accounts for an absorption peak which occurs in unmagnetized
ferrites at low microwave frequencies (see Fig. 5). It may also account in part for an absorption peak
which appears at radio frequencies. However, experiments have shown that the radio frequency
magnetic loss in certain ferrite arises from the so called domain wall resonance [Rado etat, 1950]. In
Fig. 6, there ae two pronounced dispersion regions for the solid farite. One occurs at low microwave
frequencies while the other at radio frequencies (the low microwave frequency dispersion region is
influenced by the domain rotion resona.e). In powdered ferrite, one notices that the low frequency
peak is completely absent and, since anisotropy would not be affected by powdering, the radio
frequency dispersion cannot be due to rotation resonance. Instead, it must therefore be due to domain
wall resonance. In low porosity ferrite: domain walls are easily trapped and domain wall motion.
consequently, either prevented or restricted. Under these conditions, any resonance observed at low
frequencies is quite possibly due to domain rotation resonance in the anisotropy field.

The formalism used to obtain the effective wavenumber of a ferrite composite has been derived
(Varadan ,t at.. 1986]. Because the size *a" of the ferrite inclusion is relatively much smaller than the
incident wavelength i.e., ka << 1, the long wavelength approximation can be made to simplify the
whole computation algorithm. For the convenience of the reader, we will briefly cite the final equation
which can be used right away in obtaining the effective wavenumber K.

The normalized effective wavenumber q (- K/k 2 + jK2 1k2 ), according to our previous
investigation [Varadan to al., 1986] is given by
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11 - 2(1(a;'I-'3)i(v-;,2"4'4+)w+ Aw'2wcUpYl 2wcoUVyYl)/[( '4+241 2;3)

." i(v+2;2+2,wC w4f3w wU/y!)]} /  (3-1)

The normalization factor k2 is the wavenumber in the manix material The parameters in Eq. (3-1) are
M now defined as follows
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g2 - jijc272 oNOc2) 0C

Two kinds of ferrite materials, namely R-I and R-4, prepared by General Ceramics of Division of
Indiana General (Westphal et aL, 19721 were used as inclusion materials in our numerical calculation.
The dispersion patterns of R-1 and R.4 are presented as Figures 7 and 8 respectively. The matrix
material was chosen to be PVC and the dielectric constant of PVC was taken to be e2  2to and ;.t =
go. It was assumed that both and P2e nondispersive and lossless at the microwave frequencies.
Results for the imaginary part K2 are presented, using the dB/mnn scale, in Figs 9 and 10 for R-I and
R-4 ferrites, respectively. In converting to the dB scale, the ferrite particle was assumed to be 0.4
micron in diameter in each instance. The peak of the attenuation of ferrite composites seems to appear,U for both cases, at the frequency having a minium value of the real permeability constant g, and is

* - about 3 GHz. This fact has also been observed in our previous results (Varadan et al, 1986] for
magnetite Fe30 4 . Although there is no rigorous proof, it appears that this and-resonsance behavior
may be the mechanism causing a high attenuation in ferrite composites. Besides the attenuation
pattern of ferrite composites, the phase velocity dispersion patterns are also presented for the R-I and
R-4 ferrites in Figs 11 and 12, respectively.

4. CHIRAL MEDIA

The final class of materials to be discussed here are the chiral materials. The lack of geometric
symmetry between an object and its mirror image is referred to as chirality (Bohren, 19741, and the
mirror image of such a chiral object cannot be made to coincide with the object itself by any operation
involving rotations and/or translations. Chiral objects occur in nature, the readiest available example
being the two hands of the reader. The most commonly investigated chiral objects, however, are the L-
and the D-type stereo-isomers so familiar to students of organic chemistry. As a garden-variety

PON example, the doubly enantiomorphic sweetner Nutrasweet T , patented by G.D. Searle Company, can
occur in four different forms: of these, the taste of L-aspanyl-L-phenylamine methyl ester is sweet,

We while that of D-aspartyl-D-phenylamine methyl ester is bitter, the isomers with the L-D or the D-L
configurations are tasteless (Goodman, 9851. The basis for the difference in the physical properties of
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Figure 7 Magnetic and dielectric Spectumn of R-1 ferrte (Westphal et d., 1972).

6 513

ii A



Ib

Va'adra. Varadar Ma ad Lakhtakia Piaz.ricuic. Ferrit and Chiral Polymn Coaoosi es

LU

Is 1-2.

qi44%

I Figure 10 Ateuatio vs. fequency for ferie compsies (contain 40% and 70% R-4 ferrtes).

Id

LL,

*I U

I4'

" l"* %" - I* """" ", %" , % ." Figure %1 ""J 9 nnao vs frqunc for" fer1ite com p osites 1cmri %' 1n 70 R 1 f... .



Vaaa V.'adao% Ma and Lakhtakia Pieza.ectric, Fan'riteap., Chiral Polpowa Compouiws

9 4;

.R-

4 2 I 16

S 41

Ii. Figure 12 Phase velocity vs. frequency for ferie composites (contain 40% wa 70% R1 fertues).

27zi



I-

Var-dan. Varad,,a Ma anid Lakjukia Pinoefrctric. Ferrit and Chiral Polymer Composites

the mirror-conjugates lies in the handedness or &e chirality possessed by their molecular
configurations. When an electromagnetic disturbance travels through a medium consisting of chiral
molecules, it is forced to adapt to the handedness of the molecules. In other words, linearly polarized
planewaves cannot be made to propagate through such a medium; where= left- and right-circularly

1A polarized planewaves, travelling with different phase velocities, are perfectly acceptable solutions of
the vector wave equaton for this class of media.

Though the phenomenon of chirality is known only at the molecular level and. therefore, at
frequencies in or above the ultraviolet range, it has been suggested (Jaggard et al.. 1979; Engheta &
Mickelson, 1982] that particles endowed with chirafity can exist at even lower frequencies, say, in the
GHz range. From recently reported lieaturm, it appears that fluorogold may be exhibiting chirality at
a frequency as low as 50 GHz [Birch & Kong, 19861. This is because chirality, or handedness, is a
geometric property : for example. the electromagnetic response of a right-handed helix is different from
that of a left-handed one, and the existence of chiral particles made of miniature helices suspended in
some host medium has been investigated [Tinoco & Freeman. 1957]. Furthermore, by embedding
such chiral particles in a low-loss dielectric medium, that medium, too, will possess handedness. With
advances in polymer science, it is conceivable that such artificial media can be manufactured with ease,
and their properties tailored by altering the sizes and concentration of the embedded chiral particles.

Because of the fact that the chiral media exhibit circular dichroism [Bohren & Huffman, 19831,
the usual constitutive relations D - eE and B - ±H do not hold due to their incompatibility with the
handedness of the medium. Instead. the relations (Eyring et al., 1944; Post, 1962]

D -eE+aeVx E , B - H , Vx H (4-1)

hold, the time-reversal symmetry of the fields requiring that a - [Satten, 1958]. This latter condition
due to Satten will be adopted in the ensuing discussion.

Use is now made of tM regular Maxwets equations along with (4-1) along with an exp[-jwt]
time dependence, and following Bohren (1974]. the elecmc and the magnetic fields are transformed to

H -j(.p)1 /2  1 [ (4-2)

where the left- (LCP) and the right- (RCP) circularly polaized fields, QL and QR' respectively, must
satisfy the conditions

(V2 .+ kL 2 1Q _0 (V2 + kR 2 I QR -0, (4-3a)
V x QL kLL ; V.QL -0, (4-3b)
VxQR "-kRQR ; V.QR 0. (4-3c)

In these equations,

-" kL - k /(l - kA (4 .4a)

kR , k /(I + ko 1, (4-4b)
k - oaljN. (4-4c)

Thus, from (4-2) the electromagnetic field existing in the chiral medium is given by

E -QL -ji(We)/2 QR  ; H -QR -ji("p)I1/2 QL .  (4-5)
.'

V The major consideration now to be faced is tom rd adequate representations of the functions
and QR which satisfy the conditions (4-3). In a cartesian (xy,z) co-ordinate system if the RCP and
the LCP waves are propagating in the x-z plane, then. without loss of generality, these waves can be
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set down as (Lakhtakia es aL., 1986b]

QL(r) - (IkL) :Lex:ikLCey - . xp(KLX --fZ)]; ff, * ICL - kL2 , -6a

QR(r) - (I/kR) (- ±yRex ± j kRey + KRez} expO(icRx : yRz)]; yR2 + IcR2 - kR2. (4-6b)

ex.etc. being the unit vectors of the co-ordi:ate system. In a polar (pp) co-ordinate system, these

fields can be conveniently expressed as

QL(r) - In fn [Mn(kLr) Nn(kLr)]; n -0, ±1. ±2. .. (4-7a)

QR(r) " -n gn [ln(kRr) - Nn(kRr)]; a -0, ±1,. ±2. (4-7b)

where,

Mn(kr) - V x {e, expUncp] Zn(kp)); Nn(kr) - (l/k)V x Mn(kr); (4-7c)

fn and g. are the unknown coefficients of expansion; and Zn is the cylindrical Bessel function of the
first kind if the field has to be regular at the origin, but it is the cylindrical Hankel function of the first
kind provided the field satisfies the Sommerfeld radiation conditions at infinity (Morse & Feshbach,
1953]. Finally, in spherical (r,O,9) co-ordinates, vector spherical harnmnics [Sratton. 1941] can be
used as

QL(r) - Zv m (V ( L) + NvALr)] (4-8a)

QR(r) - Ev-cmn gy [Mv(kRr) - Nv(kRr)] (4-8b)

with v being a triple-index - a is the parity index (even or odd), n goes from I to -, while m ranges
over 0 to n. The spherical harmonics are given as

Memn(kr) - - (mz,(krYsinG} Pm (cose) sinm9 eq - zk(r)(dfdO)Pnm (cose) cosm e, (4-8c)

Momn(kr) - (mzn(kr)/sinOl Pm(cosO) cosmqe e . zn(kr)(d/dO)P 0m(coO) sinmp e V (4-8d)

Nv.r) - (t/k)V x Mv(kr).  (4-Se)

In the foregoing expressions, zn is the spherical Bessel function of the ust kind if the field has to be
regular at the origin, but it is the spherical Hankel function of the first kind provided the field has to
obey the Sommerfeld radiation conditions at infinity; P m are the associated Legendre polynomial,
while fv and gv are the unknown coefficients of expansion.

The reflection and refraction characteristics of planar achiral-chiral interfaces have been
extensively examined (Ramachandran & Ramaseshan, 1961; Lakhtakia e: al, 1986b; Silverman,
1986], and it has been observed that by incorporating the chirality parameter A in an otherwise
low-loss dielectric medium. the absorption properties of a planar interface can be suitably altered.
regardless of the incident polarisation, and over a relatively large range of the angle of incidence
.'akhtakia et al., 1986b]. Boundary value problems involving chiral spheres (Bohren, 1974], spherical
shells [Bohren. 1975]. and cylinders (Bohren, 19781 have also been recently solved. Lakhtakia et al.
(1985] have applied the T-mam'ix method (Waterman, 1969] to solve for the scattering and absorption
characteristics of low-loss, dielectric, chiral spheroids.

Though the exact value of the chiral parameter 13 is not known for "chiral* media in the
microwave frequency range and must await experimentation Lrkhtakia eti al., 1985; Silverman, 1986],
we have observed from numerical calculations that the specific value of 1 can change the scattering
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characteristics of a dielectric particle drastically. For instance, shown in Fig. 13 is the absorption
cross-section Cabs of a chiral sphere {/ee - 5.0 + j0.1} of radius a- 02 m, suspended in free space,

and irradiated by a linearly polarized planewave for : 1 I0-6 m and 10 - 0" m over the 50. 300 GHz
frequency range. To be noted is the fact that unless i(kL -kR)/kl > 0.1 inside the chiral scatterer, 1
will not enhance either the absorption or the scattering cross-section significantly; if, however, 03 is

Ularge enough, then the scatterer can apyreciably retard the progress of a linearly polarized planewave
even though it may not be very lossy itself. Furthermore, if e of the scatterer is purely real, no
enhancement in the absorption cross-section may be obtained simply by the incorporation of a
non-zero

A chiral composite would consist of chiral inclusions dispersed in a non-chiral host medium, the
small chiral inclusions themselves made up of microminiature helices suspended in some other, or the
same, host medium. As a wave traverses such a composite medium, it will be multiply scattered by
the inclusions. Besides actual absorption inside the chiral inclusions, scattering into other directions
will also retard the progress of the wave in the forward direction. These considerations have been taken
into account in the formulation of a self-consistent multiple scattering theory employed by our group.
Shown in Fig. 14 is the computed value of the attenuation Imag(Keffekhost} for a composite in
which the host is epoxy (e/eo - 4.0], and the chiral inclusions (e/e 0 - 2.9 + jO.29; 0 - 0.0003 m] are
spheres of radius a. These computations were performed at a normalized frequency of khosta - 0.026
for inclusion concentrations varying from 5 -40%. As can be observed from the graph, the presence of
a non-zero 0 has greatly enhanced the coherent attenuation inside the composite. From the sample
computations made, it is clear that while our assays of their utility are still in the preliminary stages,
the role of chiral media in electromagnetic applications holds vast promise and merits further
exploration. In particular, the typical values of 0 for chiral materials in the microwave frequency range
need to be determined by experimentation.
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SCATTERING OF ACOUSTIC BEAM WAVES BY ROUGH

SURFACES
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:= ABSTRACT

We model the rough surface as scatterers of different sizes randomly distributed on an acoustically
,[, transparent plane. This problem has its application in studying the reflectivity of marine mineral

deposits. In fact. the roughness of the plane can be characterized by various size distributions of
'. scatterers. The T-matrix. which is essentially a scattering transfer function, enables us to acquire the

acoustic signature of any arbitrary shaped single scatterer and is used to obtain the frequency spectrum
4i v- of the reflectivity of an ensemble of those scatterers. In this paper, the backscattered response of a

random distribution of scatterers on a plane subjected to a normally incident, narrow beamform
acoustic wave is investigated and the beam effect on the average backscattered field is found to be
small and can be neglectedforfurther analysis of multiple scattering problems of rough surfaces.

1. INTRODUCTION

Most investigators use plane wave excitation to analyze the scattering problem from a plane of
scatterers (Twersky, 1957, Biot, 1968; Hong. 1980; Ma et aL, 1986]. The results yield a scattered
wave which is analogous to the reflection of a plane wave on a rough surface characterized by an
equivalent reflection coefficient [Twersky, 1957]. In marine geophysics it is customary to use the ray

',. ,theory [Clay et al., 1977] together with the plane wave reflection coefficient to study the reflections at
•. sea floor, i.e. rough subbottom. Therefore, the present study uses the normally incident plane wave as

this closely represents the equipment (see Fig. 1) used in the remote sensing. The narrow beam
spherical wave (as an acoustic source) analysis is done here to indicate the accuracy of its usage and

-, justify the plane wave analysis for the scattering problem. The normal incidence of a narrow beam is
also used so that one can obtain a physical interpretation of the analysis without going into too much
complexity in mathematics. Typical echo sounders use beam widths of at least 60 degree for the
acoustic beam so as to accommodate the roll and pitch of the survey ship. However, in the deep sea
sounding environment high intensity is required to overcome transmission losses occuring in the
water column. In order to do this the narrow beam width is beneficial because it concentrates the

4 acoustic energy into a smaller area on the bottom. Therefore in the market much smaller beams are
becoming common, with 6 degree being representative (Myers et al., 1969].

" 2. GAUSSIAN BEAMFORM ACOUSTIC WAVE

-" The acoustic source which is located a distance H'mbove the bottom plane (see Fig. 2), radiates a
'" spherically spreading pressure wave with a Gaussian beamform

4
', vWi(R) -VaR0 exp[- (ik + gt) I R - a I ]exp(- o82)/ R - a 1.(1
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in which V is the acoustical potential, z = (O,OH), i. the absorption coefficient in the fluid medium
(ocean), R0 the reference distance (usually one meter), 8 the beam width (in radian), 1/I R -z I the
spreading factor and a the Gassian beamform coefficient defined as

a - In 4 / SHp2  (2)

where 8Mp, the half power beam width, is shown in Fig. 3.
On the bottom plane, i.e. z - 0, at a distance ri from the beam axis the incident wave field

SJbecomes

Vi(rj) - VaRO exp[- (ik + g) D I ep(- a(S 2 yD, (3)

where D is the distance between the transducer and rj. The incident field at the image point, i.e. z - -H

or D - 2H, is

Vi(z - -H) - VaRo exp[- (ik + i) 2H ]1/2H. (4)

3. SCATTERED WAVE FIELD

A single scatterer located at rj on the bottom plane (z = 0) will radiate a spherically spreading
wave due to the excitation by the incident wave. Here we consider a planar distribution of scatterers
suspended in a fluid medium and this approximation based on the fact that the water-saturated
subbottom in which the scatterers are actually distributed has an acoustic impedance that closely
matches the acoustic impedance in water. The strength of the radiated wave depends on both the
external wave field and the scatterer's characteristics which can be described by the T-matrix [Varadan
and Varadan, 1980]. The backscattered field (0j - 0) at z -=H of the single scatterer at rj can thus be
defined as

Uj(b.s.) - T. exp[-(ik + p)D1~i(rjyD - T Va RO exp[-(ik +it)2D] exp(-a82)1D 2 . (5)

In which the subscript b.s. denotes the backscattering and T is the average T-matrix defined as

T(R-rj) - f T(. R-rj)q(aj)daj

and q(a) is the size distribution function. One sees from Eq. (5) that the spreading factor is now lI/D 2

for the scattered field uj(bs. )-
If there is a sparse distribution of scatterers on the surface, the total backscattered field is simply

the sum of the fields scattered from each scatterer. In other words, the external field of each scatterer is
due to the incident wave alone and is the first order approximation of the multiple scattering processes.
The average total backscattered field can be found as

<Ub.s.> - PTROVa f0 exp[-(ik +g)2D] exp(-cS 2 )/D22drj, (6)

where the axial symmetry and the polar integration for a large area

"A drj - f0 r-dr-dO - 2n f0 rjdrj

have been employed and p is the number of scatterers per unit area. From the symmetry (Fig. 2) one
sees

tan 8-ri H
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D 2 _H
2 + rj2

Using the above relationships and changing the integration variable by (instead of rj integration, 8j

integration is used)

rjdrj - H2 [rj / H) d(rj / H) - H2 tan8 sec28.dS

in Eq. (6), the average of the total backscattered field becomes

"Ubs.> '! 2 xp T Va R0 J21 e,,xp[.2(ik + ji)H sec .exp(-aj 2 )tanSjd&j. (7)

The integral in the above equation can be done using the principle of stationary phase [Lamb,
1932]. The magnitude of kH is always much larger than that of c3 2 (see Table I for comparison). For
kH >> 1, which is a phase control factor, the integral can be converted to the following form

2x exp[-ikHg(Sj)] tan S. d8- (8)

in which g(sj) - (2 +40k)sec Si .+ c 2/ikH
The phase angle y is obtained by solving the 8j which makes

g'(Sj) - (2 + 2hi/ik) sec 8j tan&j + aS 2 /ikh - 0

and is found to be zero, i.e. y - 0, in this case (in the interval of 0 and 2n). The second derivative of
g(j) evaluated at the phase angle y - 0 is

g*(O) - 2 + 2Wik + 2c/ikH

Using the stationary phase principle, Eq.(8) can be written in the following manner

Sg(l) 1
0 exp(-ikHg /2] d/2. (9)

in which is the parameter in the Taylor expansion around the phase angle y, i.e.

- gy. 4) + g() + g'(¥)A + g"(t 2/2! +

tan 8 - tan (Y + ) - tan y +sec 2 -Y +...

Substituting y - 0 and the expression for g() and g'(-) into Eq. (9) one obtains

.. exp [-ik(l +- lik)2H] fO exp[-ikH(l +plik +aWe-D2]dr (I0)

Finally after substituting Eq. (10) into (9) and carrying out the integral in (10) the average of the total
backscattered field becomes

<Ubs.> -( 2n pTlik)(1 + wikH + p/ik) " (Roexp[-(ik + p)2fl/a/7.H). (II)

One sees from the above equation that the last term is actually the incident field at the image

point, i.e. z - -H, comparing with Eq. (3). The beam effect which involves in the second term aiikH
can be evaluated. As can be seen from Table 2 at large depth, unless a very narrow beam width under
the low frequency is used, the beam effect on the average backscattered field is very small and can be
neglected for further analysis of multiple scattering problems. The first term is thus recognized as an
equivalent plane wave reflection coefficient which relates the average backscattered field to the incident
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wave field by just a simple proportionality. This is physically the phenomenon of the plane wave
excitation and thus the validity of the plane wave analysis for rough surface scattering problems has
been verified through the narrow beam investigation.

Table I Comparison between the Magnitudes of kH and ct82

Frequency kH
2

1 kHz 20943 2 degree 2807
10 kHz 209430 4 degree 701
100 kHz 2094300 6 degree 312

H - 5000 m, acoustic wave velocity - 1500 m/sec, 8 - 90 degree

Table 2 Beam Width Correction Factor (a/kH)

Half Power Beam Width SHP
*Frequency I dege 5 degree 10 degre

I kHz 0.22 0.0087 0.0Q22
10 kHz 0.022 0.00087 0.00022
100 kHz 0.0022 0.000087 0.000022

H -- 5000 m, acoustic wave velocity - 1500 m/sec, 6 = 90 degree
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S-, ABSTRACT

A multiple scattering theory is presented using a T- matrix to characterize the response of a
%, single inclusion to an arbitrary incident field. The multiple scattering series can be represented in

4, diagrammatic form. A partial resummation of the series is equivalent to the Quasi-Crystalline
Approximation (QCA). This results in a new Green'sfunction or propagator for the effective medium
whose singularities or poles are given by the zeroes of the dispersion equation satisfied by the coherent

10 field. The QCA requires a knowledge of the two particle pair correlation function and this is included
"% , explicitly so that volume fractions of scatterers greater than 5% can be considered. Since all fields are

generally expanded in vector sphericalfunctions. keeping functions of the appropriate polarization one
'4 can directly use thisformalismfor acoustic, electromagnetic and elastic waves by using the T- matrix

that is appropriate for the particular boundary value problem for the single scatterer. Excellent
agreement with experimental results has been obtained for all'three fieldt. Recent work using
non-spherical statistics resulting from Monte Carlo simulation for a distribution of spheroids has also
been implemented in evaluating the effective wavenumber for media containing dense distributions of

S.spheroids which was not possible before.

1. INTRODUCTION

I. The average or effective properties of a random medium containing inclusions of one material or
voids distributed in some fashion in a second material called the host or matrix material can be
conveniently studied by analyzing the propagation of plane waves in such materials and solving the

I' _. resulting dispersion equations. Since waves propagating in such a two phase system will undergo
.. multiple interactions with the scatterer phase, it becomes natural to consider multiple scattering theory

and ensemble averaging techniques if the distribution of the inclusion phase is random. In this paper, a
multiple scattering theory is presented that utilizes a T-matrix to describe the response of each scatterer

, to an incident field. The T-matrix is simply a representation of the Green's function for a single
scatterer in a basis of spherical or cylindrical functions. In this definition, it simply relates the
expansion coefficients of the field that is incident on or excites a scatterer to the expansion coefficients
of the field scattered when both fields are expanded in the same spherical wave basis [1]. In theory, the
T-matrx is infinite, but in practice the T-matrix is truncated at some size that depends on the ratio of
size of scatterer to the wavelength and the complexity of the geometry. Formally the T-matrix
includes a multile description of the field scattered by the inclusion and this requires a propagator for
multipole fields to describe the propagation from one scatterer to the next. Finally, the technique
presented here is for a random distribution of scatterers which requires an ensemble average over the
position of the scatterers and requires a knowledge of the positional correlation functions.

The formalism presented is generally applicable to acoustic, electromagnetic, and elastic waves
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The notation (On - 40-dlno is used to represent the vector spherical functions. The polarization index
,r - 1,2,3 denotes the irrotational component and the two solenoidal components respectively. The
other indices describe the multipole nature of the fields, with I - 0,1,2...; m - 0,1,2, ... ; and a
denotes the even or odd azimuthal parity in spherical coordinates. The acoustic field being completely
irrotational will be described by r - I only, the elctromagnetic field by rc - 2,3 and the elastodynamic
field by c - 1,2,3. The procedure for computing the T-matrix for each field has been described in
several publications, in particular we refer the interested reader to Varadan and Varadan [2]. In the
multiple scattering formalism that is presented below, if proper identification of the polarization index
is made and the appropriate T- matrix substituted, all three types of wave propagation problems can
be studied.

Good agreement has been obtained with available experimental results for all three types of waves
for a wide range of wavelengths, scatter concentration and properties (3,4,5]. The theory presented
here most closely resembles the work of Twersky [6,7] and Tsang and Kong [8]. The infinite hierarchy
of equations that results in a multiple scattering formalism when the exciting filed is averaged has
usually been tuncated by using the Quasi-Crystalline Approximation first proposed by Lax [9]. In
this approximation, which is shown to be completely equivalent to a partial resummation of the
multiple scattering series, only a knowledge of the two body correlation function is required. In
previous studies [10,11], we relied on spherical statistics for hard spheres, generated by Monte Carlo
simulation or by the Percus-Yevick approximation even for non-spherical scatterers. Essentially, this
increased the exclusion volume surrounding the non-spherical scatterer, and artificially restricted us to
smaller concentrations in order to prevent the statistical spheres from overlapping. In the present
s'udy, these restrictions are removed by using a new Monte Carlo simulation developed by Steele [12]
for non-spherical scatterers, that is based on expanding the two body correlation functions in Legendre
polynomials. This permits us to consider the angular correlations that exist for non-spherical oriented
scatterers. The final equation for the formalism is the dispersion equation which describes the
propagation characteristics of the coherent or average filed in the effective medium. The numerical
solution of this equation yields the effective complex, frequency dependent propagation number which

a is also a function of the size, geometry and distribution of the inclusion phase. The effective
wavenumber is a function of the direction of propagation in the effective medium if the medium is
effectively anisotropic. If, for example the scatterers are spheres or if the non-spherical scatterers are
randomly oriented, the effective medium will be isotropic, but if the medium contains aligned
non-spherical scatterers the effective medium will be anisotropic. The effective wavenumber can be
related to the effective material properties of the medium which are also complex and frequency
dependent. For anisotropic materials, by solving the dispersion equation for different directions of
propagation with respect to the aligned non-spherical scatterers, we can construct all components of
the material property tensors of the effective medium such as the elastic stiffness tensor or the
dielectric tensor, see [13).

Numerical results for aligned and randomly oriented oblate and prolate spheroids using the new
correlation functions have been obtained and compared with previous calculations for spheroids that
used spherical statistics. We forsee important applications of these new results to electromagnetic
wave propagation through aerosols, which are non-spherical and often consist of aggregates and also in
other cases where non-spherical scatterers are involved.

2. EFFECTIVE WAVENUMBER FOR THE AVERAGE FIELD IN A
DISCRETE RANDOM MEDIUM

Let the random medium contain N scatterers in a volume V such that N -4-, V - oo, but noN/V the number density of scatterers is finite. Let u, u° , ue. u5 be respectively the total field, the

incident or primary plane, harmonic wave of frequency w, the field incident or exciting the i-th
scatterer and the field which is in turn scattered by the i-th scatterer. These fields are defined at a point
r which is not occupied by any one of the scatterers. In general, these fields or potentials which can
be used to describe them sausfy the scalar or vector wave equation. Let Re on and Ou gn denote the
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basis of orthogonal functions which are eigenfunctions of the Helmholtz equation, see Morse and
Feshbach [14]. As explained in the introduction the subscript 'n' is an abbreviated superindex and
vector notation is implied. The qualifiers Re and Ou denote functions which are regular at the origin
(Bessel functions) and outgoing at infinity (Hankel functions) which are respectively appropriate for
expanding the field which is incident on a scatterer and that which it scatters. Thus, we can write the
following set of self-consistent equations:

N
u - u +.. 

u si 3 uei + us . uO + Z u s + u ()

u°(r) - p exp (ikko.r) - n an Re *n (r - ri) , (2)

u! - -n aiRe n(r - ri) ; a< I r-r i <2a , (3)
i n.

" uS - i ZnfnOu n(r-ri) , -r-r i  >a ; (4)

:',"i i
where an and fn are unknown expansion coefficients. We observe in Eqs.(3) and (4) that "a" is the
radius of the sphere or cylinder (for 2-D problems) circumscribing the scatterer and that all expansions
are with respect to a coordinate origin located in a particular scatterer.

The T-matrix by definition simply relates the expansion coefficients of uei and usi provided ue i
+ uSi is the total field which is consistent with the-definitions in Eq. (1). Thus [1],

i i .1,

fn n nTnnan ' (5)

and the following addition theorem for the basis functions is invoked,.

Ou0n (r -- rj) - n' nn' (ri - rj) Re ¢n' (r - ri) (6)

Substituting Eqs. (2) - (6) in Eq. (1), and using the orthogonality of the basis functions we obtain

ai - ai + I o (ri - rj)TJaJ (7)

This is a set of coupled algebraic equations for the exciting field coefficients which can be iterated
and leads to a multiple scattering series.

For randomly distributed scatterers, an ensemble average can be performed on Eq. (7) leading to

<ai> i  - ai + < a (ri - ri) TJ<J>ij> i  (8)

where < >ilk denotes a conditional average and Eq. (8) is an infinite hierarchy involving higher and
higher conJitonal expectations of the exciting field coefficients. In actual engineering applications, a
knowledge of higher order correlation functions is difficult to obtain, usually the hierarchy is truncated
so that at most only the two body positional correlation function is required. (9

To achieve this simplification the Quasi-Crystalline Approximation (QCA), first introduced by
Lax [9] is invoked, which is stated as

Tn<aJ>ij ( <aJ>j (9)

" Then, Eq. (8) simplifies to
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<ai>i , ai + < o (ri - rj) TJ<J>j> ; (10)

an integral equation for <ai>i which in principle can be solved. We observe that the ensemble
average in Eq. (10) only requires P(r.1ri), the joint probability distribution function. In particular, %
the homogeneous solution of Eq. (10) leads to a dispersion equation for the effective medium in the
quasi-crystalline approximation. Defining the spatial Fourier transform of <al>i as

<0ti~ i  ,, J eiK-ri Ci(K) dK(I)

and substituting in Eq. (10), we obtain for the homogeneous solution

Ci(K) - I Jo(r.- ) TJ P(rjlri) e i K'(ri- rj) dr. CJ(K) (12)

j~i

If the scatterers are identical

Ci(K) Cj(K) C(K) (13)

and thus for a non-trivial solution to <al>i, we require

II - J a(r i - rj) TJ P(rjlri) ei K(ri - rj) drjI -0 (14) -

In Eqs. (12) and (14), P(rjIri) is the joint probability distribution function. For isotropic
statistics,

P(rj (r i) .- 0; (ri-rjl <2a ,.

g(I ri-rj I )/V;I I>2a (15)

where we have assumed that the scatterers are impenetrable with a minimum separation between the
centers being the diameter 2a of the circumscribing sphere in 3-D and circle in 2-D. Equation (14) can
hence be simplified to

I o -nofa(rI-r 2) Tg (Ir- r2 )eiK*(r-r -r2 I =0 (16)

where (l/V) 5-Ji i - (N-I)V - no. The integral in Eq. (16) is simply the spatial Fourier transform of
crTg. The zeroes of the determinant as expressed by Eq. (16), yield the allowed values of K as a
function of the microstructure as determined by the T-matrix, the number density no and the statistics
of the distribution as determined by the pair correlation function. In general K, the effective
wavenumber is complex and frequency dependent.

In order to perform the integration in Eq (16), we need a model for the pair correlation function.
For non-spherical scatterers, the pair correlation function depends not only on the length of the vector
connecting the centers of the scatterers, but also on the direction of this vector and the orientation of
each scatterer. If the scatterers are spherical, then there is no dependence on direction ind orientation
and the statistics are said to be spherical or isotropic. In both cases, the scatterers are not allowed to
overlap, i.e. an infinite repulsive potential is assumed between scatterers. In the statistical mechanizs
literature, several schemes are available for calculating the pair correlation function of' hard' particles.
For spherical hard particles, analytical results can be obtained for sparse concentrations in the form of
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a density expansion or virial series, and for higher concentrations the Percus-Yevick, the
self-consistent approximation, and Monte Carlo simulations have all been used for distributions of
spheres, see [10,11]. If spherical statistics are used, then the so called 'hole correction integral' on the
excluded surface can be done analytically, resulting in a matrix that is diagonal. This simplifies some
portions of the calculation considerably. Results, explicitly for non-spherical scatterers are not readily
available, and in previous calculations, we artificially surrounded the non-spherical scatterer by a
transparent sphere that enclosed it, or considered a sphere of equivalent volume. In the first
approximation, the non-overlap of the statistical spheres severely limited the concentrations that we

. could consider, and the second approximation, although better than the first did not lead to satisfactory
results at volume fractions exceeding 10%.

It is interesting to examine what type of multiple scattering terms contribute to the
quasi-crystalline approximation. If Eq. (8) is iterated, we obtain

<cti>i ai+< zji a ij TJaJ>i

C," + Y ''i <rJJ ZkYj CJkTkak>i> + "" (17)

here the abbreviation a]J - o (ri-r i) has been used, and matrix multiplication is implied throughout.
We recall that a and T are suitably truncated matrices and cx and a are suitably truncated vectors.
Suppose the QCA is invoked for each term in Eq. (17), i.e.

<Ojk Tk ak>ij _ < jk Tk ak>j (18)

Then we note that only two body correlations are required and the multiple scattering series in Eq. (17Y
can be easily summed by spatial Fourier transform techniques using the convolution theorem.
Symbolically, the multiple scattering series in Eq. (17) may be represented as

< a
i  

+ + +4 . r .----U j k j .k l --
k II

where 0- denotes ack,  denotes p(r i Irk), * denotes TJ and *+- denotes ak. Eq. (17) "-or its alternate form (171) can be summed and written as k

< -i> -f [I - no J a(x) T g(x) e- iK-x dx ] -1 (exp iK.ri) ai dK (19)

In Eq. (19), the matrix inverse is the spatial Fourier transform of the Green's function or I,
propagator for the effective medium in the QCA as given in Eq. (18). The dispersion equation for the
medium is given by the zeroes of the spatial Fourier transform of the Green's function. Thus, the

.7 dispersion equation resulting from Eq. (19) is identical to the one obtained from Eq. (15). ]
The dispersion equation as given in Eq. (16) is very well suited for computation. Using

appropriate forms of the basis functions *n which are solutions of the field equations, the T-matrix of
the single scatterer can be computed; for example, see Varadan and Varadan [2]. The translation matrix
a. although complicated in form for cylindrical and spherical functibns, can nevertheless be computed
in a straight forward manner. The spatial Fourier transform of a T g is fairly easy to compute because
the integrand is well behaved for large values of the interparticle distance. In the results presented for I
different types of wavefields, tabulated Monte Carlo values for impenetrable spheres [15] were
substituted for g at various concentrations. The roots of the resulting determinant were found using

t- Muller's method by giving initial guesses using the analytic expressions for K which can be obtained
from Eq. (15) in the long wavelength limit. The real and imaginary parts of the effective'vavenumber
can be related respectively to the phase velocity and attenuation in the effective medium. The
attenuation is due to geometric dispersion or scattering which may be further enhanced if there are
losses associated with the material properties of the scatterer and/or the host.
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4 In recent years, considerable progress has been made in Monte Carlo simulation to describe the
statistics for non-spherical hard ( impenetrable ) particles by Steele (12]. He has expanded the joint
probability functions in a series of spherical harmonics and radial functions with unknown
coefficients. The coefficients are evaluated directly in the Monte Carlo simulation. For aligned prolate
and oblate spheroids, these results have just become available. The excluded volume for these
geometries is also spheroidal. The hole correction integral can only be done numerically, and thepresulting matrix is no longer diagonal. This has been implemented in calculations of the effective
wavenumber in media containing random distributions of aligned spheroidal particles [19]. It can be
seen that correct statistics conforming to the shape of the particle is needed to get correct results at
volume fractions exceeding 5%.

3. NUMERICAL RESULTS

In this paper we have given a general formalism to describe multiple scattering of waves in a
discrete random medium, which leads to a dispersion equation that is numerically tractable for
acoustic, electromagnetic and elastic waves. Here we simply refer the reader to several papers that
already contain numerical results for the phase velocity ( real part of the effective wavenumber) and
attenuation ( imaginary part of the effective wavenumber ). The attenuation of the coherent filed in the
random medium may be due to real losses associated with the lossy properties if any of the scatterers
but is also due to geometric dispersion or multiple scattering. Thus a composite material is effectively
lossy even if the constituent phases are non-lossy. The numerical results that have been published are
for spherical and spheroidal particles that are randomly distributed at volume fractions in the range of 0
- 45% whose sizes are comparable to the wavelength of the propagating wave. The spheroidal
scatterers can be'aligned (16], or randomly oriented (17]. At the volume fractions considered, multiple
scattering and the effects of statistical correlations cannot be ignored and were crucial in the excellent
agreement weobtained with experimental results, for acoustic waves see [18], for ;lectromagnetic
waves, see [3], and for elastic waves see [5].

(a) Acoustic properties of a two phase fluid
The scatterers in this case can be penetrable elastic solid or fluid particles, acoustically hard or

acoustically soft spheres. The adiabatic compressibility of the effective medium can be obtained from
the definition

K2 (c) <X> <P> (20)

k2  X0 PO

where k is the wavenumber in the host medium, <p> - (I - c ) p0 + c ps. the average mass
density, po and ps being the density of the host and scatterer materials, Xo is the adiabatic
compressibility of the host material, <X> is the effective compressibility of the composite fluid and c
the volume fraction of scatterers. For the case of a random distribution of bubbles in water, excellent

t.. agreement has been obtained with the experimental results of Silberman [18) (see Figure 1). The
calculations reproduce the long wavelength bubble resonances that result in an anomalous dispersion
of the phase velocity and a peak in the attenuation as a function of frequency.

(b) Effective orC-rsiesn ofstrugtural comnosites
In a fiber reinforced composite, for P - (longitudinal), SV - (transversely polarized shear wave)

and SH - (shear waves polarized parallel to the fibers) wave propagation, if the fibers are circular and
parallelly-oriented, the effective medium is transversely isotropic and will be characterized by five
elastic constants. By calculating Kp. Ksv and Ksh, three of the five elastic constants can be found as
a function of frequency, fiber geometry and concentration. If wave propagation along the fibers is
considered, then the remaining constants can also be found. In the long wavelength limit anal)tical
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Figure I (a) Normalized phase velocity versus nondimensional frequency ka for bubbles in water

- (Ref. [19]).

-J (b) Coherent attenuation vercus nondimensional frequency ka for bubbles in water
(Ref. (19)).
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Figure 2 (a) Real part of shear modulus versus nondimensional frequency (Ref. [131),
(b) Imaginary part of shear modulus versus nondimensional frequency (Ref. [131).
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C LEA SPHERES IN EPON 28-Z
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Figure 3 Comparison between theory and experiment - phase velocity versus frequency for lead
spheres in Epon 828-Z (Ref. [51).
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Figure 4 (a) Coherent attenuation versus concentration for latex spheres in Aater for k a < I
(Ref. (3]).

(b) Coherent attenuation versus concentration for latex spheres in Aater for ka > I
(Ref. (3]).
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shown in Figure 2 are calculated effective shear moduli for boron fiber reinforced aluminum
composites.

(c) Effective elastic proerties of narticulate composites
For spherical particles randomly distributed in a host material, the composite material is

effectively isotropic and hence characterized by two effective elastic constants which can be obtained
by solving the dispersion equations for K and Ks, see (5.20]. Here again for particulate composites,

"" we have obtained excellent agreement wi0 the experivnental results of Kinra who measured the phase
, ,velocity as a function of frequency for a distribution of lead spheres in epoxy [5 (see Figure 3).

(d) Effective dielectric MpoReties of dielectric comptosites
For a random distribution of dielectric or metal spheres distributed in a dielectric host material,

* the medium is effectively isotropic and characterized by jult one dielectric function which can be
obtained from the effective wavenumber K via <t> - e <K>'/ k2, where eo is the dielectic function

-7 of the host material, see (16]. For a dense distribution o~plystyrene spheres in air again we obtained

excellent agreement with the experimental results of Ishimaru (3] (see Figure 4). For optical
experiments, our theoretical results compared extremely well with those obtained by Killey and
Meeten [4] (see Figure 5).
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Anisotroplc Dielectric Properties of Media Containing Very recently Tsang [121 has also reported some results for non-

Aligned Nonspherical Scatterers spherical, randomly oriented particles.

VASUNDARA V. VARADAN. MEMBER. IEEE, Y. MA. AND Wave Propagation in Media with Aligned Nonspherical Scatterers

VUAY K. VARADAN, MEMBER, IEEE Consider an isotropic medium characterized by a refractive

index ' e in which aligned rotationally symmetric scatterers
Abstract-Electromagnetic wave propagation in a medium contailig a are randomly distributed. The rotational axis of symmetry is

random distribution of aligned, pair-correlated nospheltical scatterers Is taken to be the z-axis. Plane harmonic waves of frequency W,
P studied using the T-matriz to characterize the single autterr response. the propagate in the direction k0 (a, (). If j)

, j t andU
quaicysalia aprxiaton(QA)and the correlation function. The poateithdrcin .,P)If0, 01 U ndO specify

quallirstaie appromatio (QCA)age e inualliolve the incident field, the field exciting the ith scatterer and the field•. resulting dispersion equation for the average median is numericaliy solved

as a function of frequency and the direction of propagation. Nomerical scattered by the th scatterer respectively, then seff.corlsistency

results are presented for the attenuation of electromagnetic waves versus requires that
frequency, Concentration, and direction of propagation.

INTRODUCTION

It is well-known that in a medium with microstructure in the The exciting and scattered fields are expanded on a basis of
vector spherical functions, as follows [61

form of discrete-random inhomogeneities, electromagnetic waves
undergo attenuation as well as dispersion. If the inhomogeneities 2

are either spherically symmetric or randomly oriented, the r() = 4trm Re $s.Im.(- 9), ; - ,I 2a
medium is macroscopically or on the average isotropic The 7=- It(

4-9 €- attenuation and phase velocity are independent of the direction (2)
of propagation. However, the medium can be effectively aniso- 2,>() = 7 )1 t 2a
tropic if the scatterers are nonspherical and aligned. In this case " 5= Into

the propagation characteristics of the medium are a function of (3)
the angle with respect to the axis of alignment (taken as the Z- where r, denotes the center of the ith scatterer and a is the radius

. axis). of the circumscribing sphere.
Such problems I)ave been studied in detail by Twersky [1]. Using the extended boundary condition method [51 we can

[21 for both acoustic and electromagnetic waves. He has pre- derive a T-matrix to relate the unknown coefficients a and /
sented analytical results for elliptical cylinders and ellipsoids as follows:
in the long wavelength approximation including the effects
of the pair correlation function. The formulation that we pre- f - .0, 7 , , 0  ra,. .a (4)

-- sent is quite similar but is, however, more suited [3] for numeri- v rm'a
cal computations at higher frequencies requiring smaller matrices
to yield convergent results. The dispersion equation that we solve where Ti, the T.matrix of the ith scatterer, depends only on the

numerically is compared to that obtained by Twersky. Both frequency w and the geometry and nature of the scatterer.
treatments rely on the quasicrystalline approximation (QCA) Substituting (2), (3), and (4) in (1) and using the translation
to break the heirarchy of equations for the ensemble average addition theorem for the vector spherical functions, we obtain
of the field exciting a particular scatterer. As a result only a . io
knowledge of the two particle correlation function is required. = 4irin(ko) e
In a recent report [4] we have shown what type of multiple

4 scattering processes are included in the QCA and which ones + a,(P*-9)T (5)
are neglected. The response of a single scatterer to the field

-"exciting it is characterized by a T-matrix, The T-matrix is numeri-
cally generated on a basis of vector spherical functions using where the abbreviated index n represents the set {r, 1, rn, a,
Waterman's extended boundary condition method [5]. [6]. 4,, are vector spherical harmonics, A41 = rVY,,,, A 2 = r X ,
Earlier work using this general scheme was restricted to randomly and a,.,, is the translation matrix [91.
oriented nonspherical scatterers or for wave propagation restricted A configurational average is performed in (5) over the random

4 to the alignment axis [8] -[11 ]. Numerical results are presented positions of the scatterers and the QCA is invoked in the usual
for aligned spheroidal scatterers as a function of frequency, manner [9] . For identical scatteres, we obtain
volume fraction of scatterers and the direction of propagation. (ai)1 = 4sri'An(ko)e ti"
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where p(,;1I7) is the conditional probability distribution func- The four quantities B1 1-,, B2 2 ,1, BI 2,, ,21± are vestiges
tion and (aJ,.) is the conditional expectation of a, with a scat- of the translation matrix after the angular and radial parts have
terer fixed at it. been absorbed in the integration. Expressions for them may be

The average exciting field is assumed to propagate with the found in terms of the Wigner coefficients and are given below:
wavenumber K of the effective medium. K = K I + iK2 is a com- B1 1,1 B22,t =(_l)m'tm
plex frequency dependent function unlike the wavenumber k =

./c of the host medium. Thus F (22+ )(2/+ I)(2x+ I) 1/2
, L (1+ 1)( (+ I)

when substituted into (6) permits us to evaluate a portion of the
integral for impenetrable particles, i.e., p(All?) = 0 if IAl -ii I( X,2a and p(Aj1 j) = (I1V~g(jir -riil) for 1;1'- ijl > 2a where V 00 0 M' T-M M;m
is the large volume of the system such that the number density
no(=N/V) is finite. For details we refer to our earlier work [(V + I) + 1(1 + 1) - Xo, + 1)]
in [91, the difference in this case being ko * 1.

If the scatterers are rotationally symmetric, then the Tmatrices
are diagonal in the azimuthal index, i.e., m' = in". In this case B '=8 (l)Pt±n(re,e,,4e,,.,)lI2i - r +X

we can assume, without loss of generality, that ko is in the x -ps21+l)(2t'+i)(2Xr+l) 1

z plane since there is a complete symmetry in the x - y plane. (2X l)2 +I)T+11 2r xl
Further there is a very simple relationship between the dispersion L 1(1+l)r((+1) ( 0 0 0
equations that result for wave propagation with polarization
parallel to the x - z plane and perpendicular to the x - z plane.,(nf I
For this case (7) when substituted into (6) results in the following M' T-m T M

%*, equations for the coefficients X, ,n and X2,,,.))
I'+/ [X2 -( 1-)211/2[(1, + I+ 1) ) ] 2 /2. (12)

Xi IMo= 2 nu; 2 1 I
I'm' i- X=gr-t Equations (8a) and (8b) may be written in vector matrix nota.

+TI , - 1tion in the form+ 'o.21"ex '.;} • B' X{ M", .(

" Yx,,'- ,,(ko)(- 1)" - ' 'Y ,m.' +,e(ko)} x, = MoX,.  
(13)

+ r' e. o xtto + . 2 fe X2  } The dispersion-equation for the effective medium then become

{B 2 1+ ly.m- M e(ko)(
- I)m I51/- M (w, K,/k.) I = 0 (14)

2"" 2 16+4awI where Mil itself is an infiite matrix for each i,/. The determinan.
- I'- Y;,,.M (k))1 k2 K 2 (JH)\ + 4/ tal equation must be solved numerically using suitable forms of

the pair correlation function g(x), for given c, Ico, no, and T.

(8a) It is seen that the solution will depend explicitly on the direction
and of wave propagation ko, rendering the medium effectively aniso-

tmet [tropic.--. I,, no T, j 1- "'I
-t',.' 1' A=I'-II RELATIONSHIP TO TWERSKY'S DISPERSON EQUATION

o{B12.+y.l In a series of papers, Twersky [1], [2] has derived the dis-
+7I'0,2reX2 e} ~M~ ( persion equation invoking the quasicrystalline approximation and

B B12.- YX m+me(o)} including the effects of pair correlation for both acoustic and
electromagnetic wave propagation in pair correlated random"" + IrT', fl- +

+( T'2,.o XI Io 2
+ T212. " X2,tf }r distributions of aligned scatterers. For spherically symmetric2 2 +  . )- statistics, i.e., requiring a spherical excluded volume even for

nonspherical scatterers, we can show that the dispersion derived

+ B " 2 16a2 by Twersky [2] is identical to (8a) and (8b) when the scattered
+ B2. Y.'+m.( k)}] K2 (J'/)x+ 4nrl\ field is written as an expansion in vector spherical harmonics.

In [2, eq. (81)], the dispersion equation for electromagnetic
' where (8b) wave propagation in aligned, random distributions is given as

(JH)x = kl,(2Kay'i(2ka) (9) C =  amp-

- Kix(MKa)hx(2ka )  I S s

and

Ii) [g(x)- li,;(Kx)h (kx)x2 dx. (10) + (-u C 2I Bvt15a
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and

Bnm = - " ,, cM Cst) ca Bs"I

+ 8 ' C 2 t C " , + C ' B , ( 5 b ),' .
,Ma, s/ .-

.% [c(6) 1  + i~ t)B,] "M I P -

where in our notation • ,

Cnm ' X1 nm, Brim - Xarn, / /"

nI[9,E in E [0,*l] ,

are the scattered field coefficients. ii

•m l"T  
-,. S/ a 58.3,
Ft T IT21 2 C • 0.2 , II POLARIZATION

-2 2 4 L2

is the T-matrix of an individual scatterer and the two symbols - 20 1 POLARIZATION - - -

"'- - 1C1 and C2 are related to the Fourier transform or the product ~ ie

of the pair correlation function and the translation matrix as in

(6).[tt ou ,
In the notation of the present paper and the abbreviated index a5 C * 0.21, 1 POLARIZATION -

notation we may write Twersky's equation. (I 5a) (I 5b). in the 10 a

form N1

kX2. T21: Ta 12 C2 [i (16)

We note that (8a) and (8b) may be multiplied from the left by ' 6

the T-matrix, so that the dispersion equation is in terms of the 0 0.8 1.6 ko

average scattered field coefficients rather than the exciting Fig. I. Plot of attenualion versus normalized wavenumber for a distribution

field.. Thenus=ng J)* = X(JK')' we can rewrite the ofQtCigud thetoida for wave popagatio at a =  58.3 andaa -0O

dispersion equation in the form method and a main program that specifies the parameters w.

.'"i + no .T,a,,. (rieIK *" Xg(J Ii 1) d .~ no. a, io and the shape and nature of the scatterer. The root
X, = an finder returns the value of K = K, + iK2 that renders 1 Ti -

(17) Mu/I= 0. This is then the complex, frequency dependent effec-

SWe further note that using the integral representation of the tieis bween r the meim.Atog smlrain s

exnoe between the dispersion equations for parallel and per.
vector spherical functions the translation matrix can be written pendicu polarization, the resulting wavenumbers K u and K' are
in the form in general different.

.The truncation sizes of both T and M are varied till con-
If= 2J d' An( ) • ( - ') vergence is obtained. The computation is more time consuming
-" -"than for the case when k. = i because an additional summation

(-1) r" + S'reikr'  (18) on the azimuthal index is involved, i.e., the aximuthal modes
7. +,are no longer uncoupled. This involves the storage of fairly large

,, where C. are the contours. Using properties of the scalar pro- matrices. Typical computation time for a lossless oblate spheroidal
ducts of vector spherical harmonics of the same argument as given dielectric scatterer of aspect ratio 2:1 with the dielectric constant
for example by Twersky [21 , we can show that e, = 3.168 for a given w, no and k , is about 60 s after the

program has been tested for the correct matrix size.
[ -)iK '-I C' -Ca We now present results in the form of plots of the imaginary(U) e 'go ;br) d C (19) part of the relative effective dielectric constant (e)as a function

of ka = oa/c, ko(at, = 0) and c = no4ra3/3 where a is the semi.

as defined in [2, eq. (80)] so that the dispersion equation derived major axis of the oblate spheroid of aspect ratio 2:1 and 1.25:1.
- here is identical to that of Twersky. We recall that (e) = K 2/k2 , at ka - 1.7 when a crossover occurs.

In Fig. 1, the attenuation given by Im (K/k) is plotted asa func-
- RESULTS AND DISCUSSION tion of ka for both parallel and perpendicular polarization for

The dispersion equation (14) was programmed on an IBM a = 58.30 and c = 0.21. Also included in the figure is the attenua.
* 370. The main parts of the program consist of subroutines that tion for a = 0 and aspect ratio 1.25:1. In Fig. 2 the attenuation

1) generate the T.matrix for a given w and shape of scatterer, is plotted as a function of a varying from 0° to 900. The attenua.
. 2) set up the matrix 6il - M1 , 3) special function programs, tion is a slowly varying function of a and is maximum at a = 0 .

4) determinant solver, 5) complex root finder based on Muller's In Fig. 3, the complex plane plot of the relative effective

" -
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Multiple scattering of elastic waves by cylinders of arbitrary cross
section. II. Pair-correlated cylinders
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Multiple scattering of elastic waves by randomly distributed cylinders of arbitrary cross section
has been considered. Because the pair-correlation function, as well as the quasicrystaUine
approximation, has been incorporated in the presented formalism, the effective phase velocity, as
well as the coherent attenuation in dense systems, has been investigated. A more efficient
scattering formalism (SF) has been employed rather than the exciting field formalism (EF) used
earlier by the authors. Closed form expressions for the phase velocity and the attenuation are
given in the Rayleigh limit, and numerical results are presented for a wide range of frequencies
and concentrations.

PACS numbers: 43.20.Fn

INTRODUCTION here is precisely the formalism introduced by Twersky in the
In a previous paper,' we presented an exciting field mul- 50's. When performing the numerical calculations, we find

tiple scattering formalism for cylinders using the concept of that the SF is more suited for computations at higher fre-
a scattering operator-the Tmatrix.2 This formulation used quencies requiring smaller matrices than the EF reported by
the T matrix to characterize the scattering by a single isolat- us earlier.' Closed form expressions for the phase velocity
ed scatterer followed by configurational averaging tech- and attenuation are presented in the long wavelength limit,
niques. Lax's quasicrystalline approximation (QCA)3 was and it is shown that our results for circular and elliptical
used to truncate the resulting hierarchy of equations. This cylinders agree with those given by Twerskys for all concen-
yielded a set of"hole correction" integrals which were evalu- trations. Numerical results are presented for bath phase ve-
ated analyfically, and the extinction theorem was invoked to locity and coherent attenuation for. higher frequencies.U 1yield the dispersion relation characterizing the bulk or effec-
tive properties of the medium which was solved numerically. I. DISPERSION EQUATION USING SF FORMALISM
Computations of the effective coherent wave attenuation as
a function of the nondimensional waverwmber ka ("a" being In this section only the essential details and the final
a characteristic dimension of the obstacle) were presented in result for the dispersion equation based on the SF (scattered
Ref. I for various concentrations (c). The formalism based on field) formalism are presented. The equations presented here
a sparse distribution of correlated scatterers leads to unphy- are identical to those given by Twersky' ° if the notation
sical nulls in the plots of coherent attenuation at high values used here is properly interpreted.
of the concentration (which disappear at higher values of/ca). We consider N (N--.o) arbitrary shaped (rotationally
Moreover, in the Rayleigh limit, the formalism gives only symmetric), long, and parallel cylindrical scatterers embed-
the phase velocity and does not provide the analytical ded in an infinitely extended elastic solid (matrix). Letp, , P
expression for coherent attenuation. be the density and rigidity of the matrix and P2,92 those of

The incorporation of the complete correlation function the scatterers. A planeSHwave of unit amplitude, frequency
between the positions of the scatterers provides the effective co, and wavenumber k is incident perpendicular to the axis of
properties, coherent attenuation, etc., for dense systems. If the cylinders in the direction k.
the QCA is invoked, it has been shown by Twersky"- that From Ref. 1, one can obtain an equation relating the
only a knowledge of the two-body (pair) correlation function scattered field coefficients in the form
is required. Twersky has considered a general formalism for + )b. T a.. + ( -l"a+'o. .,r )
scalar waves in Refs. 4-6 and for electromagnetic waves in + 2r Ta~ o
Ref. 7. ' "

In this paper, we consider the multiple scattering of elas- (1)
tic SH waves by randomly distributed cylinders incorporat- where the T matrix T'.. relates the exciting and scattered
ing the QCA and the pair-correlation function as given by field coefficients for a particular (ith) scatterer, ao. = i" e'k -r
Twersky.6 We studied the problem using a scattered field are the known incident field coefficients, ry = r, - r, is the
formalism (SF) rather than the exciting field formalism (EF), vector connecting the ith andjth scatterers, and b, are out-

* since SF provides a more convenient basis for scattering of going cylindrical wavefunctions. Equation (1) is precisely the
elastic longitudinal (P - ) and shear (SV - ) waves" by elas- same as introduced by Twersky in the 50's. o
tic scatterers and by piezoelectric scatterers 9 which couple Since the number of scatterers is large, it is more mean-
both elastic and electromagnetic fields. The SF employed ingful to perform a configurational average over the random
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positions of all scatterers except the ith, which is assumed to II. RAYLEIGH LIMIT SOLUTION
be fixed. The details can be found in Ref. 5. We thus have for The dispersion relation derived in Eq. (4) can be solved
identical scatterers in detail to predict the phase velocity and coherent attenu-

b) + (N -) ( ) *  ation for a two-phase composite medium. Although the sys-
7, + - - tem of equations requires a numerical approach to yield so-

lutions for higher values of frequency, analytical results can

x .(r,)( bJ,. ), p(r,) drj, (2) be obtained for low-frequency approximations. Including

/ the effects of correlation between scatterers, it is seen that an

.- . where (), and ( ) denote the configurational average attenuation factor is obtained in the Rayleigh limit. Analyti-
with the ith scatterer held fixed and both the ith and jth cal results are seen to mainly depend on the form of correla-

scatterers held fixed, respectively, and p(rj I r,) is the condi- tion assumed. The g(x) obtained from the virial series and the

* tional probability distribution function. For impenetrable geometrical considerations by Twersky '6 agree very well

cylinders, p(rj Ir,) = 0 if Ir, - r, I < 2a, where "a" is the lar- with Monte Carlo calculations. Using Twersky's results for

gest dimension of the cylinders and p(r I r) = g ]r, - r,)/S, g(x), we hence obtain the dispersion equations for both elas-

where S is the large area over which the cylinders are distrib- tic circular and elliptical cylinders, respectively, embedded

uted. Here, we have assumed isotropic or circular statistics in an elastic matrix:
even for noncircular cylinders and the function g(x) is the circular cylinder
radial distribution function. Equation (2) yields an infinite K( - 1 -

coupled hierarchy for the conditionally averaged scattered I = [1 + c(d - 1)] 1 + c 1 -c

field coefficients. It can be truncated by using the quasicrys- k +m/

talline approximation (QCA) suggested by Lax3 and k3[( 1 +C)(l n 2]-I

Twersky. In this approximation, ( b., ),( b '),, which 4 +m/i
has been proved valid for a wide range of concentrations.
Further, we assume the existence of a coherent field propa- × j2( - [1 + c(d- 1)]
gating in the direction k, of the incident field with an effec- 1 + ml
tive, complex, frequency dependent wavenumber K = K, + (d - I)2[ 1 - C ( I _M)] (6)
+ X.2 of the form+M

and
(b .) = X.ei *' ', (3) elliptical cylinder

where X. is an unknown constant. K -= 1 + c,(d - 1)] Ic, (I - m +

Equation (3) is substituted in Eq. (2) and the extinction k 2 2(rb+ a)

theorem can be invoked to cancel the incident wave term on X(l (1 -m)(a+b)'

the right-hand side of Eq. (2) (refer to Twersky' for details). -1  b + a)
The resulting equation is

~~X. =n T.tt,,,.,X,, (4) 4"

where 
X [( + C)(_C,(I l (a + '-,

!,m = 21ri' -' (k 2 - K 2 )-l [ 2kaJ' -, (2Ka) 1 ( 2
ii~~ ~ " 2.lm)(a+ b)

X H~.'-(2ka) -2KaH. ,(2ka)h,..,2K) 12 mb ) )[I +cl(d- 1)]
- , _ )k ( + a)

4afH~(k~~(Kx 2(mb + a) )i
x [ g(x)- l]xdx]. (5) c=nora2, c, =cb/a<c. (7)

These results agree exactly with those of Twersky if we put
In Eq. (4), we have assumed that N and S are infinitely large d = C'andm = B ' in his Eq. (70).' In this paper, we pres-
with the number density no = (N - I)/S. Equations (4) and ent numerical results at higher frequencies for various aspect
(5) are identical to those obtained by Twersky' ifthe Tmatrix ratios of elliptical cylinders. This is discussed in Sec. III.

, .t. is interpreted as the single scattering coefficients.
Equation (4) is a system of linear simultaneous equations

for the coefficients X,. For a nontrivial solution of the coher- III. NUMERICAL RESULTS AND CONCLUSIONS

ent field, we must require the determinant of the coefficient The analytical expressions for the phase velocity and
matrix to vanish. This is the required dispersion equation, coherent attenuation as obtained above could be derived
which can be solved for the effective propagation constant K only for very low values of ka, as higher approximations

as a function of k and c. This will be discussed in Sec. II. The would lead to unwieldy expressions. A quantitative estimate
. values of gfx) obtained by Monte Carlo calculations are used of the multiple scattering process at resonant and higher fre-

in our numerical computations.". 2  quencies can be obtained by numerically solving the disper-
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FIG. 5. Normalized phase velocity versus nondlizensional frequency ka for

different aspect ratio and concentration.

Figure 5 presents numerical results of the frequency de-
pendent phase velocity for different concentrations as well as

be seen from Fig. 2. The phase velocity ratio first becomes aspect ratios. When the aspect ratio b/la is close to unity, the
less than 1 and then increases to become greater than 1 after phase velocity gradually decreases and then increases with
c = 0.5. Figure 3 presents the attenuation for different fiber the increasing frequency. Nevertheless, this behavior be-
concentrations and various aspect ratios. One is able to ob- comes quite different when a smaller aspect ratio is em-
serve that in the long wavelength limit the peak of the attenu- ployed. As can be seen in Fig. 5, instead of increasing, the
ation occurs at a smaller concentration for smaller aspect
ratio fibers. The larger the number of scatterers, the faster
the attenuation rises and falls for the same concentration. In
other words, the transition phenomenon in the two-phase "I
medium may occur at a smaller concentration if the smaller
aspect ratio fibers are used in the low-frequency range. A
similar attenuation trend is also found for BaTiO, fibers as fl
presented in Fig. 4./
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FIG. 6. Normalized phase velocity versus nondimensional frequency ka for FIG. 8. Attenuation coefficient versus nondirnenaional frequency ka for cir-
circular 11010, fibers in polyttrethene. cular BATiO 3 fibers in polyurethene.
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phase velocity gradually decreases after ka is about 2.0. But composite of BaTiO3 in polyurethene, which is shown in Fig
when the same aspect ratio fibers are used, the higher the 8. However, the magnitude of the attenuation is about ten
concentration, the larger is the phase velocity, as expected. times larger than that of the aluminum composite due to the

If a different composite is used, i.e., BaTiO, fibers in much larger shear modulus used.
polyurethene, the characteristic of the phase velocity against
concentration is totally changed, which is depicted in Fig. 6. ACKNOWLEDGMENTS
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A propagator model using Feynman diagrams is presented for studying the first and the second moments of the
electromagnetic field in a discrete random medium. The major difference between our work and previous treat-
ments of this type is that all diagrams are in a basis of vector spherical functions. Each propagator or infinite-
medium Green's function ib the translation matrix for spherical functions, and each scatterer is characterized by a T
matrix that, in turn, is a representation of the Green's function of the scatterer in a basis of spherical functions. AllI'. orders of multipoles are formally retained, in contrast to previous work involving the dipole approximation. Partial
resummations of the scattering diagrams are shown to be related to the quasi-crystalline approximation and the
first-order smoothing approximation. The lowest-order term of the ladder approximation for the incoherent
intensity is evaluated. Sample numerical results are presented and compared with available experimental results.

INTRODUCTION introduced by Bourret 2 and used by Keller 3 and his co-
We consider the propagation of. plane coherent electromag- workers.
netic waves in an infinite medium containing identical, loss- In this paper, we represent the multiple-scattering seriesI less, randomly distributed particles. Our aim here is to in a basis of vector spherical functions using the T matrix to
characterize the random medium by an effective complex characterize each scatterer. Formally, the T matrix in-J wave number K (which would be a function of particle con- cludes a detailed description of the scatterer to all orders in a

centration, the electrical size, and the statistical description multipole expansion, this in contrast to previous treatments
of the random positions of the scatterers) and to study both that invoked the dipole approximation. The so-called prop-
coherent and incoherent intensities as a function of frequen- agator or Green's function that propagates the signal frord
cy for various values of the concentration c (the fractional one scatterer to the next is again represented in a basis of
volume occupied by the scatterers). Although the formula- vector spherical functions. This again is a consequence of
tion is generally valid for nonspherical, aligned, or randomly not invoking the dipole approximation to describe the scat-
oriented scatterers, initial calculations are confined to terer. Thus instead of simply using a full-space Green's
spherical scatterers, which generally give us a better picture function of the form exp(ikr)/kr, as would be appropriate for
of the order of magnitude of the different contributions to point scatterers, the propagation matrix used here describes
the intensity without the additional complications of non- the propagation of a complex, multipole field to the next

'.' spherical geometry and orientation. scatterer.
Extensive work by Twersky' -5 has laid the foundation for The partial resummations that can be performed by re-

multiple-scattering theory in discrete random media. A taining only two-body correlations including only sequential
4 related approach using the T matrix of a single scatterer6  scattering lead to so-called dressed propagators. These

- -together with configurational averaging procedures have propagators describe a medium with a different propagation
been used by the authors to develop a computational meth- constant. One of the new observations we make is that the
od for the electromagnetic-wave-propagation problem in in- QCA first used by Lax'0 and the first-order smoothing ap-
homogeneous media?-9 Lax's'0 quasi-crystalline approxi- proximation of Bourret1 and Keller13 appear to be the re-
mation (QCA) is used in conjunction with suitable models summation of the saine class of diagrams. This does not
for the pair correlation function to obtain an effective wave seem to have been commented on before.
number K(- Kt + iK.) that is complex and frequency de- In addition, the intensity of the electromagnetic field is
pendent. In a classic paper, Frisch'I has demonstrated for- also represented with the help of Feynman diagrams. The
mally the relationship between the present problem and its so-called coherent intensity is the summation of all diagrams
analog in quantum mechanics. He used Feynman diagrams that involve two independent field lines, whereas the inco-
to show that the mean Green's function for the random herent intensity is the summation of all diagrams that in-
medium is analogous to the Dyson equation, whereas the volve two distinct field lines intercepting different scatterers
second moment of the Green's function is analogous to the but that are, however, coupled by positional correlationsSBethe-Salpeter equation. More interestingly, he showed between scatterers. The lowest approximation to the nco.
that retaining only two-body correlations and summing all herent intensity leads to the ladder diagrams. We also refer
terms involving sequential scattering and correlation is to the work by Tsang and Kong," who have computed the
equivalent to the first-order smoothing approximation first backscattered intensity in single-scattering approximation.
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" Sample numerical results are presented for the first and P .P ..

the second moments of the field and compared with the P ir
experiments of Killey and Meoten.'f

eA to

" MULTIPLE-SCATTERING FORMULATION c

04 Consider wave propagation in an infinite medium of volume

- V - - containing a random distribution of N scatterers, N 
P  P

- -, such that no - NIV. *he number density of scatterers,

6J is finite. Plane harmonic waves of frequency w propagate in ; k

0 the medium and undergo multiple scattering. Let E, E°,
S E,e , and E,E denote, respectively, the total field, the incident

field, the field exciting the ith scatterer, and the field* scat-
tered by the ith scatterer. Then self-consistency requires P

S- the following relationships among the fields7 -9: +

E = E0 + E (1)

i- I

and
N Fig. 1. A diagrammatic representation of multiple-scattering pro-

E,* = E° + EEi. (2) cesses.

" If we substitute Eqs. (7) and (5) in Eq. (1) and iterate, we

Let OR' generally denote outgoing functions (Hankel obtain
functions) and functions regular at the origin (Bessel func-
tions). We dispense with vector notation, and the abbrevi-
ated index may denote n - r, 1, m, a; r - 2,3; 1 e [0, -]; me E(r) E 0 (r) + Ou 4,,(r -

[0, 11; see Refs. 7-9.
At a field point r in the host medium, the incident, scat-

tered, and exciting fieids are expanded as follows:- + L,(-r)

E '(r) = a, Re ¢,(r), (3)

+ .' u ~ -r) ... .... (9
E' (r) n' a' Re ',(r - r,). Ir - r,l <2a, (4) (9)

E'(r) = f,' Ou ,,(r - r,), (r - r,), Ir - ri > 2a, where r, = (r, - r).
The first term in Eq. (9) is the incident field reaching the

(5) observation point r denoted by P in Fig. IA. The second
v . term of Eq. (9) is a sum of N contributions, each of which can

where r, denotes the center of the ith scatterer and a is the te d by iarm f tntype owi Fg n
radius of the sphere circum scribing any scatterer. The coef- b e r s n e y ad a r m o h y es o ni i .13

ficients a, are known, whereas the coefficients f, and a, are solid line represents the propagator Ou ¢Mr - r)T, thattunknow n but are, how ever, related through the T m atrix :soi l ne r p s nt th p o ag or O n - r) n' h t

ua e tTpropagates the field from scatterer i to observation point r.

f, ff ' Tso .. aY . (6) The sum of all N diagrams of this type is termed single
n scattering. The third term of Eq. (9) is a sum of N(N - 1)

contributions, each involving a pair of particles, and is repre-
Substituting Eqs. (3)-(6) into Eq. (2) and using the trans- sented by the diagram of Fig. 1C. There are also N(N - 1)

lation-addition theorems for spherical wave functions and terms of the form given in Fig. ID that involve only a pair of
the orthogonality properties of spherical harmonics, we ob. particles. There are N(N - 1)(N - 2) terms of the type
tain shown in Fig. 1E. As seen from Fig. 1, the three-body pro-

cess can include any number of scattering in any order
C,' I a' + a,,(ri - rn)T'...a.-, 7 among the three objects.

where
FIRST MOMENT OF THE FIELD AND THE

Ou ,(r - rd) a,.(r, - r )Re 4,,(r - r,) (8) QUASI-CRYSTALLINE APPROXIMATION
' Equation (9) can be averaged over the positions of the parti-

and a,, is the translation matrix for spherical wave func- cles to yield the coherent, average, or first moment of the
, 'tions . field:

,
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note them by 0(k) and 9(k), respectively. Using the convo-
(E(r)) = E°(r) + T,, Ou 4,,(r - r,)a,'p(r,)dr, lution theorem, Eq. (12) can be simplified to

rEt'(r)E"(0) E'(r) + no f Ou(r - r,)TJ1 + nogtK)T

f f + n 0 'cg(K)Tcg(K)T

X p(rJri)drdr i + ... , (10) + no1-g_(KTg(K)Tug(K)T

which involves all orders of joint probability functions, p(r),. + - - -]exp [iKh. (r, - r 2 )]a 2dKdrtdr 2, (13)
p ( r j I r i , e t c .w h r

To solve Eq. ( 0) is a formidable task, and it is not surpris- where

ing that the QCA was introduced at an early stage by Lax'0  ug(K) = f q(x)g(]x)e'X'dx. (14)
and Twersky. To show the connection between Eq. (10) and
the QCA, we now place some severe restrictions on the al- The terms on the right-hand side of Eq. (13) can be summed
lowed multiple-scattering processes. First, we require that formally, and we can rewrite Eq. (13) as
each particle contribute only once to any term of the multi- (Et 0t(r)) = E'(r) + f Ou kp(r - r,)T. ,
ple-scattering series. Further, we do not permit back and
forth scattering between a pair of scatterers. Finally, the N- X no f (1 - nodg- TJ.,.- '
particle joint probability function is factored as follows:• X exp[-iK - (r, - r 2)]a~o2dKdrxdr2. (15)

p(rI, r2 ... .rN) = p(r,)p(r 2 I r 1)p (r 3 I r 2) ... p (rN r N -0.

This new form of the average field can be interpreted as an
incident plane wave propagating through an effective medi-

With the above assumptions, Eq. (10) can be represented um ofpropagation constantKand propagator (1 - no T7 -

diagrammatically as undergoing scattering from a particle at r, and then propa-
gating to the observation point r with the wave number of

(EQcA) = E(r) +---.'o. < the host medium. In Eq. (15) we can write
+ - - . (lib) .,.-(r,- r2 ) - f [1 - no-g(K)T]t.

-. where - denotes the incident plane wave, 0 denotes a scat- X exp[-iK • (r1 - r2)]dK; (16)

terer, 0-0 denotes scattering from particle 2 to particle 1,
0-0 denotes the correlation between the positions of parti- then
cles 1 and 2. and, finally, -0 "denotes the propagation from

particle I to the observation point r. In Eq. (lIb) 0- will (E W(r)) - E ° + no f Ou ,(r - r) - r)
be replaced by an, each O- O will be replaced by TaT, (
where ., the transition matrix, accounts for the propagation a(

of waves from one scatterer to another, and *-O will be The dispersion equation in the model medium is given by
replaced by p(1. 2). Hence the explicit form of Eq. (11) is the zeros of R(K) that yield the effective propagation con-
then stant of the medium. We recall that the propagator in the

host medium has a Fourier transform of the form 1/(k 2 -
E"*r) E'"r) + .V Ou (r - r 1)Ta'p(r,)dr, W2/c 2) that has a pole at k - w/c. The poles of the new

propagator are then determined by the roots of the deter-

-+ . ),j ¢r - r,)T.7r,,)Ta-p(l. 2)drdr 2  minantal equation:

I - no-g(K)T -0. (18)
N " rp TIn our previous papers we derived a aispersion equation"/ ,' + Ou r - r, ) Ta4 r, )pp 1, 2)Ta~r,.1)p(2, 3)Ta3

2. for the random medium by directly invoking the QCA in the
equation for the field exciting a particular scatterer. Thus,

x dr~drdr, + .N' Ou 4r - r,)Ta(r,2 )p(l, 2) if Eq. (7) were averaged directly, holdirg the ith scatterer
a4 fixed, then

x T r3)pi 2, 3)Tai r34p(3, 4)Ta dr, .. dr4 +. . ... (12)

In Eq. (12),we have removed the restrictions in sums, such (a,'), - an' + Z ( (a"),). (19)
as Z, Z, 4', by noting that p( 1, 2) is automatically zero if r2 - " "
" ri. Thus the propagators in Fq. (12) may be interpreted This immediately leads to an infinite hierarchy in which the
as cut-out propagators that vanish if the argument is less conditional average of a, with p scatterers held fixed in-
than the hard-core diameter of the scatterers. For spherical volves a conditional average on the right-hand side with p +

* statistics we note that I scatterers held fixed. Thus a knowledge of all orders of the
SI2 rcorrelation function is required. As is well known, Lax trun-

V -1 , p ~l, 2) = p1r), r.) = -1g(Ir3 - rj) cated this hierarchy by approximating

We now introduce spatial Fourier transforms of the trans- , ( (a,, ) 120)

lation matrix and the radial distribution functions and de- This is the famous QCA. Twersky -s has already stated that

*%
:4
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theQCA neglects back and forth scattering and includes where we have allowed only sequential two-body correla-
only sequential scattering. By assuming that the average tions and grouped the terms into four categories. The first
field propagates with an effective propagation constant K, term is, of course, the incident intensity. The second group

E i.e., contains two field lines that are uncorrelated from one to
X,(a,.s) X,. exp(iKh0 • r). (21) another but contain correlations within themselves. The

ethird group contains two field lines that, however, interact
and using expressions (20) and (21) in Eq. (19), we formally with the same particles. The last group contains the ladder
obtain diagrams but also allows sequential correlations within each

X -no f ,,.(r,)T ,,..p(r1r,) exp[iK- (r, - ri)]driX ,,. field line. All the other possible terms that contain dia-
(22) grams of the type>(22) ,

This is a homogeneous set of equations for X.. For a non- x "
trivial solution, the determinant of the coefficient matrix
should vanish, leading to

iI - - = , (23) have been neglected.
noag(K)TI The first two groups of terms contribute to the coherent

which is identical to Eq. (18). intensity, and the last two groups contribute to the incoher-
Thus invoking the QCA is identical to a partial resumma- ent intensity or spectral density of the field fluctuations.

. tion of the multiple-scattering series represented by the The diagrams can be resummed by introducing the so-called
diagrams in Eq. (lb). Although this has been generally dressed propagators, if we refer to the translation operator
known, no formal proof has been given before, especially a,,(rij) in the host medium as a bare propagator. The I
when the full multipole description for each scattering is dressed propagator is the propagator in a medium that al-
used. The more interesting observation is that Frisch"1 has lows only QCA-type sequential-scattering terms with se-
shown that Eqs. (11) are also equivalent to the first-order quential correlations and is identical to Eq. (16). Such
srroothing approximation. Thus it would seem that the propagators are represented by bold lines in contrast to the
first-order smoothing and the QCA are equivalent. There bare propagators. Thus
appears to have been no discussion of this in previous litera-
ture on the subject. 4 ) u ["

SECOND MOMENT OF THE FIELD INTENSITY 1" (26)

The intensity or the second moment of the field with polar-
'.'- ~ization C4 at r is simply defined as .. .

Is(r, w) = CA. (E(r, )E(r, )) • a. (24) (26)

R IfEq. (9) is substituted for E in Eq. (24), we get the multiple-
scattering series for the intensity. Diagrammatically each The terms in (b) can be summed by using Fourier trans-
field line in Eq. (24) can be represented as in Fig. 1. When forms and convolution techniques, but the ladder diagrams
both fields are multiplied and then averaged together we get in (c) do not lend themselves very easily to resummation by
correlations between scatterers on both field lines. Using Fourier-transform techniques. The relative contribution of
the same notation as before, the following diagrams result: the terms in (b) and (c) is studied numerically in the next

I!----o---. - section..1-, (,r, w) Q CI .EJ 2)1 + " .

t -NUMERICAL RESULTS
0" 12 Three types of results are presented in this section. The

first type is the calculation of effective propagation constant
S--- - --- -by solving the roots of the determinantal equation [Eq. (18)].

The numerical procedure for doing this has been described

in detail in Refs. 7 and 8 and will not be repeated here. The
computation requires the T matrix of the scatterer; here we
have used the multipole field for spherical scatterers. The
concentration c of scatterers (fractional volume occupied by

"the scatterers) and the frequency are the other parameters
required. In addition, the pair correlation function is re-
quired. We have used values generated by Monte Carlo
simulation for hard or impenetrable spheres as a function of" -. ' "'- - . !,distance between the spheres and the concentration of

- - - . (25) spheres. The details may be found in Ref. 16.%IS
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In Figs. 2 and 3, the real and the imaginary part of the J
effective propagation constant in a distribution of Revacryl
spheres is plotted as a function of concentration for two
different frequencies denoted by the wavelengths X -4100.
nm and X A 546 nm. These wavelengths were chosen be-
cause our calculations could be compared with the experi-
ments of Killey and Meeten.15 The agreement is very good, o 0-

K: as can be seen from the graphs. The refractive index foro
Revacryl spheres used in the computation was taken to be n kcG 0.1;

1.48, adthe host medium is distilled water with n Iti 4- 6 e= 0
1.334.

In Fig. 4, the lowest approximation to the coherent inten-
sity that is given by the first term in Eq. (26) was ~.sed to 0.2
compute the coherent intensity. In lowest approximation,

%00
20 40

141 5tICM1 DI~SPESCU 1k DISTILLED WATER(a

TWIORY IVASAAAN it at
0.6 - a

L33 . 0.5

0 10 20 30 40 500.

Fig. 2. Phase velocity versus concentration c for Revacryl disper- C 90.10
3ions in distilled wate~r at) A A 546 nm.

4- 0.2

0-

1.04nn 0 112.0

546 5d' 10y 5d 200"
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* (b)
0 0o I20O 30 40 50

Fig. 3. Coherent attenuation versus concentration c for Revacryl 0.6

dispersions in distilled water at X- 410 and 546 nm.6.iO

0
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-4 O.179 Fig. 4. (a) The spatial Fourier transform 7(K,ka - k ) ofgfl,4) - 1

0 200 400 600 as a function of concentration c for ka - 0.1 and 9 - 300. (b) Thespatial Fourier transform (Klho - h;) of gqj'4) - 1 as a function of
observation angle 9 for c AP 0.10 and ha - 0.1, 0.5, 1.0. and 2.0. (c)Fig. 4. Coherent intensity as a function of propagation depth z for The spatial Fourier transform 7(KIA0 - k ) of g ilxl) - I as a function

various values of c at.X - 546 nm. of ho in the backacattering direction for c -0.05 and 0.10.
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1.0 terms in (b) of Eq. (26) without also retaining higher-order
ladder diagrams.

In Fig. 5(b),7(Kko - kr) in Eq. (27) is plotted as a function
0.8 of observation angle for different values of ka. It can be

z cLIO seen that for 0 = 1800, the contribution from Ito the incoher-

0. 3 ent intensity is greatly dependent on the value of ka under
0.6- .30consideration. In Fig. 5(c),? is plotted for two values of c

0.05 and 0.1 and 0 - 1800 (backscattering) as a function of

k..0The conclusion from Figs. 5(a)-5(c) is that the incoherent
ed p intensity has contributions from both (b) and (c) in Eq. (26),

0 0.2 
and more studie are indicated to neglect one in favor of the
other.0 In Fig. 6, the normalized incoherent intensity is plotted as

0 - a function of ha at c = 0.1 for an observation angle of 300.
1.0 1.2 1.4 1.6 1.8 2.0 The curve labeled C is the total contribution that is due to

ka single scattering; the curve A is due to completely correlated
Fig. 6. Normalized incoherent intensity that is due to single scat- or single scattering from the same particle I, and B is due to
tring from correlated scatterers as a function of ka for c - 0.10 and a I. It is clear that B is not negligible compared to A..30*.
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Design of Ferrite-Impregnated Plastics
(PVC) as Microwave Absorbers

VIJAY K. VARADAN, MEMBER, IEEE, VASUNDARA V. VARADAN, MEMBER, IEEE,

YUSHIEH MA, AND W. F. HALL

Abstract -This paper is concemied with the modeling of absorption of in the 0.1-10-GHz range of frequencies. Plots of IL', ts", (',
microwaves in a comaposite containing a random disribution of Fe3 O4  and (" of the composite are plotted as a function of
particles embedded in PVC. The theoretkal model based on a self-con- frequency. The reflection and transmission coefficients of
,',lent multiple scattering formalis. including the effect of f ndiricnl

- correlations in the positions of the particles. A T-matrix i used to the composite slab for various angles of incidence are also
characterire the reomse of individual ferrite partices to any incident plotted as a function of layer thickness as well as angle of
excitation. An analytical expresion Is obtained for the complex propa- incidence. The only other reference that provides some
gation conslanl in the composite In the long wavelength limit. useful information on the material properties is the book

In addition to presenting results for a variety of material, including Ni
ferrie compounds, it is shown that a particular set of sumed value% of ih by Smit and Wijn [3]. We believe that there may be other
complex mag.netic permeability and dielectric function leads to very good Sources, especially in the internal research reports of vari-
agreement with the experimental data of Ueno et at 121. ous industrial and government research laboratories, that

may be of a proprietary nature and, hence, not easily
I. INTRODUCTION available.

r- HE HIGH DIELECTRIC and magnetic loss tangents The plan of this paper is as follows. In Section I1, the
. of the magnetite Fe3O, makes it an ideal candidate for multiple scattering formalism is presented. In Section 1II.

applications to microwave absorbing materials. Generally, long wavelength approximation are invoked to obtain a
the Fe3 O, particles in the form of spheres or cylinders are closed-form solution of the dispersion equation for a ferrite
held together by a binder such as PVC. Since weight and composite. The equation can be explicitly solved for
the structural integrity of the composite is also of concern spherical particles, for arbitrary concentration within the
in many applications, it is desirable to choose the optimum limitations imposed by the quasi-crystalline approxima-
volume "fraction of Fe3 O4 particles and adjust. the shape, tion. Analytical expressions for the effective complex wave-
size, and distribution of particles to obtain the required number are presented. In Section IV, the calculations and

. mass density and microwave absorbing properties. A reli- results for Fe3O, composites are explained and the com-
" able theoretical model that can predict effective properties parison with the experimental results of Ueno et at is

for various values of these parameters is an economical discussed. A short summary and conclusions end the paper.
way to arrive at the optium configuration. Such a model is
proposed in this paper. II. MULTIPLE SCATTERING FORMALISM

Since the use of ferrites in microwave absorbing com- Consider the propagation of plane-harmonic electromag-
posites is relatively new, measured values of the electrical netic waves along the z axis of an xyz coordinate system in
and magnetic properties of ferrites are difficult to find in a medium referred to as the host or matrix characterized by
the literature. For many types of ferrites, it is hard to real values of the dielectric function ch and magnetic

measure the complex permeability and the complex permit- permeability p+. Embedded in the matrix is a random

tivity due to the high electrical conductivity of Fe3 O1 . For distribution of randomly oriented scatterers characicrized

some materials, such as the Ni ferrite compounds, one can by a complex permittivity it - sc ttr' "and complex per-

find measured values of complex permeability but not of meability co'm +pie'. In this paper, the time dependence

permittivity. This may be due to the fact that completely e-b is assumed throu hout. The number of scatterers V

different techniques are called for the two measurements, and the embedding The nbo f large r N
One ay efe toLax nd uttn [). ad te ebedingvolume V are both large, but whenOne may refer to Lax and Button [1 . N/V - no, the number density is finite.

Recently. U no t oi [ ] have reported experimental The total field at any point in the host medium is the
results for iron oxide (Fe5 O4) impregnated plastics (PVC) sum of the incident field and the fields scattered by all the

scatterers. The field that excites a given scatterer (say, the
* Manuwripi received March 1. 19195; rcvtd Septeiii r 25. 191M5 tth the

V K. Varadan. V V Varadan, and Y Ma are with the Laboratory for ith scatterer), f,, however, is the incident field L. Plus
Electromagnetic and Acoustic Research, Department of Engineenng Sci. the fields scattered from all the other scatterers E1

* ence. Pennsylvania State University, University Park, PA 16802.
W F Hall is with Rockwell International Science Center. Thousand .
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where F and 7, are the observation point and the position In (7), P is the Jacobi polynomial, which can be expressed
of ihc j th scattcrcr, rcspcctivcly. Expanding ull the ficids in in terms of thc associated Lcgcndrc polynoiniaIs (.,cc

terms of vector spherical functions and employing the Edmonds (7]).
translation theorem and the orthogonality of the basis The T-matrix averaged over all possible orientations of
functions, we obtain (see Varadan et at [4] and Bringi et a. the scatterer may then be written as
[51)

2n + 1 e k (T.,. = , -- dy dl sin
- n(n+ i) - [.i +(+1)8, ,1 

N~

'+ E E [B-I"B--,(F, - .,
- 1 4, I

+ c,"c:, (, - ) (2)
.'.-'.fo +. 11( + ' .2 l E t. . * ., .8 .it.....

(n+1) i.(2iin
:,N (x),

+ n,,,"'c"' ( r If (2) and (3) are multiplied by (T) from (8), we obtain a
set of coupled equations for the scattered field expansion

+ C'"J1B,,"( - (3) coefficients which are averaged over all possible orienta-
tions.

where E' denotes j *, 8,,,, is the Kronecker delta, and k It remains now to perform an average over all possible

is the wavenumber in the host medium. B,"' and C:' are positions. To this end, one can introduce a probability

the scattered field coefficients, b', and c,"' are the exciting density function of finding the first scatterer at F,, the

" field coefficients, and B," and C,,,,"' are the functions second scatterer at 2, and so forth by p(F, F.'.7N)
resulting from the translation theorem of the vector sphcri- which in turn may be expressed in terms of conditional

i cal functions. probability p(rF,V), of finding a scatterer at F if a scatterer

Now we introduce the T-niarix of a single scatterer is know to be at 7. The two-point joint probability func-

which relates the scattered fidd expansion coefficients to tion p(.I1) is in turn defined in ters of the radial
the exciting field expansion coefficients as follows (see. for distribution function g(I - FI) as follows:

.. example, [6]):
B T": T"2 J(b T(b. g ( I7J - 7,1) , JF,- 'l > 2a ()

C T ' C () P;1 )- V(9)

For aligned identical scatterers, if the T-matrix is com-

puted with respect to the ryz axes, then the T-matrix of all
N scatterers is the same. However, if the orientation of where V is the large but finite volume occupied by the

" each scatterer with respect to the xyz axes is defined by the scatterers and 2a is the largest dimension of the scatterer.
Euler angles a.,8,.,. then the T-matrix of the ith scatterer Here, the scatterers are not permitted to penetrate one
is a function of the Euler angles and is defined by another. Several models of g(r) are available and are

briefly outlined in Bringi et at. [8]. The radial distribution
T DTD (5) functions obtained using the self-consistent approximation.

where t is the T-rnatrix of a scatterer evaluated with which is a linear combination of the Pcrcus-Yevick and
respect to the set of coordinate axes natural to the scatterer hypernetted chain approximations, secm to be good for a
XYZ axes), and is independent of position and orienta- wide range of concentrations, and are also used in our

lion and is. hence, the same for identical scatterers. D is computations here. Improved forms of g(r) as outlined by
the rotation matrix given by Edmonds [7] Twersky [9] for nonspherical statistics can also be em-

ployed if it can be extended to higher orders of concentra-
-- "D,',, (..,) - '..d,,,,,( )e" (6) tion. Performing the configurational averaging and invok-

where ing the quasi-crystalline approximation as outlined iII
Twersky [101 and Varadan et at. [11], [12]. We obtain the

,[ (+ m)'(n - n)' ] ' 1 3 C , .... average scattered field coefficients as follows:.L, (3 _ cos-
m'),( m('[ (T 2)

(sin 2- (c..7)c, - , (10)

-W", 4"",•

%, >i -. r



Lb -

VARADAN ef al.: FERJUTE-IMPREGNATED PLASTICS AS MICROWAVE ABSORBERS 253

where In (14) and (15), jq and h. are the spherical Bessel

2n 1 +1 e functions, and the primes denote differentiation with re-
im - +1) ] 4 spect to the argument. The expressions for "a" and "b"

1= n 1(n1 +)i i occuring in (14) are related to the Wigner 3-j symbols
1 oo and are given by Cruzan [13]. Setting the determinant of
+ f [.(, ,., , - ,) the coefficient matrix generated from (14) to zero, we can
"-0 - - ' solve for the average propagation constant K - K I + iK2.

-)d ( The real part K, is related to the phase velocity, while the
(C, C.In, )d imaginary part K 2 is related to the coherent attenuation.

and For ferrites, it is not possible to obtain the values of pi and
. ,  t separately from a knowledge of the wavenumber alone.n, = en n 1 8  + n 18l, For nonmagnetic materials with p- .o, this is possible.

N o R2 111. ANALYTICAL SOLUTION FOR THE EFFECTIVE
J(--/ ,,) WAVENUMBER IN A FERRITE COMPOSITE FOR

- n- 0 n- - n2 fMICROWAVE FREQUENCIES

C,,+ (C n, BI",'(F,-7)] g( 1 - F1)dr. (12) Equations (14) and (15) of the previous section can be
solved numerically as illustrated in several papers by

In (11) and (12), V' denotes the volume of the medium Varadan et aL [11], [12]. For the problem at hand, it was
excluding a sphere of radius 2a. For identical scatterers more convenient to solve the truncated set of dispersion

J-', = N - 1 and 41r(N - l)a 3/3V = c, the volume con- equations analytically. At frequencies in the gigahertz range,
centration of "scatterers" provided N is large enough. the wavelength in PVC is of the order of several millime-

To find the average propagation constant K for the ters. Radar absorbing composites have to be designed such
composite medium, we assume a plane-wave propagation that enough attenuation and reflection reduction is achieved
with effective wavenumber K in. the same direction as- the in a coating which is a millimeter or two in thickness' The
incident wave direction with unknown amplitudes Y and Z ferrite particles are much smaller than a millimeter in

(B.,) ,. y. , 4 diameter. Thus, one can safely solve the dispersion equa-
tion in the long wavelength approximation.

C.,- Z) ,e'. (13) Retaining only the dipole terms in (14), we obtain

Equation (13) is substituted in (10) and the extinction (T'')1 t(1H0 +pH 2 )-1 f(T2 2 ) 1JH 0
theorem can be invoked to cancel the incident wave term 0.-"" I( Tt ),,.H ( r 2)tt(JHo + JH2 ) -1
on the right-hand side of (11) and (12). The resulting 2

equations are (16)
I" n l 0 ao "I "In

._, ~~~yn., " E F. E T -)_""',,.,,(Jl,

q-1n - nil n1 -0 n2 -0 mI, - n m- - nz

- • (yn,,2 [ T t t )..,.,,,,a(n2, ni,q)a(ra2, nzl-ml, ntq)

, -(T 12)fl,,,, b(n 2 , nj, q)a(m2 , n - m,, n1Iq, q -1) (14a)

+ [(T 12)... ,,a(n 2, nI, q)a(m, , n21- ml, n,,q)

r_ (T.),,,,m.,,b(n 2 , n1, q)a(M2 , nz2 - m, ntlq,q -1)])

and The hole correction and the correlation integral of (15) can
Z.. (14b) be written analytically as

wherc (14b) can be obtained from (14a) by replacing (T 11)
and (T 2 ) by (T" 1 ) and (T 22 ), respectively. The term JHn 2 6c [2ka(2Ka)h,(2ka)
(JI1). is given by 6C (ka) 2 _ (Ka) 2  K "6c

( JH)q - 2()Z_( a) 2 [2kaj(2Ka)h'q(2ka) -2Kah.(2ka)j(2Ka)]
"JH) -f2 xah g( ) 1a

-2Kah,(2ka)j (2Ka) +24cj2 -g(X)

f+24c x[g(x)- I] .h(2kax)j,(2Kax)dx. (17)

hq(2kax)j(2Kax)dx. (15) For spherical particles, the dipole term of the T-matrix

W". Fr_- -..- ,, - -... ., . .',, '. € . . F ."C .. x,,L. , ;.g. ' 7 ', d .- -- ".- -,
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takes the form

- x J1 [2]12 -(k 2 a) j 22 1 - 2Jt2 [2Jtt -(kia)j211
{LIjI t[2h, 2 -(k 2 a)hu1 -A 2h12 t[2j -(k1a) 211)

22' ;Lhtjl[2j,-"(k ja)j211 A2tx " j.}[jI aj2

j-/ 2 LIJ[2ht1 -(k a)h 221{ ph12 [2j~l - (k~a) 211 - ;L2 -j 1 2 -( 2ahJ

According to the symmetry of the T-matrix for a spherical where '1 = (K 1/k 0 )+ i(K 2/ko). The rear part of "7 cnahlcs
scatterer us to calculate the effective index of refraction, whilc the

attenuation in the composite is inferred by the imaginary
(T' 2 ) -0 and (T 1 ),1 -0. part of 71.

The parameters in (19) are now defined as follows:
Here, the following notation has been used: a - c 2 (U - y2 U -2yV)/y , - c 2(2"yU + V - y 

2 V )/y/

Sj,,,, = j,,( k.,a) spherical Bessel function = C( By + r2- C( Oy - C) /)
':' - C(ye + D)/y , - (.l-y - h)/',

h._ = h,,(k,a) spherical Hankel function, U - b.e - b.D

,,-1.2 i 2(By+A), -2(Ay-B),

and the subscripts I and 2 for k (or subscripts I and 2 for e" 2(Cy - D), b - 2( Dy + C)
p and ) represent the properties of the scatterer and the .. .. ..
matrix, respectively. A -

In the microwave frequency range, the solution to the B - [(I'- ;g)(2A'2 +p 'j) - (A, - A2)(2'j' + ,u']/A
effective properties of a ferrite composite, which is a mix- c +(';- ')(2C,+ ;)+( '- ')(2+j+
ture of ferrite particles embedded in a plastic matrix, is

6. given as D - [(ii' cj)(2c'2 + )-( (+- c)(2 ' )] /,

2 4(a - I - P, +4(v - +'2 - +3w +/w -- 2wcU//y, +2wc/UV/y,)
17 (a -2+2r,+ 2,)+ I+2r2+2,+4#,w+4#bw+ / (191

.......................................... % .-
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netic permeability displays a characteristic peak due to the of and Iu. These values will have to be obtained from
• natural ferrimagnetic spin resonance of the iron oxide. It is measurements, but these are easier to measure than the full

this high value of ;ij' and the high conductivity of the spectrum.
ferrite that results in a large it' (imaginary part of the
dielectric function) that leads to the high absorption of EM ACKNOWLEDGMENT
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Acoustic response of manganese nodule deposits

Y, Ma*, A. H. Magnuson:, V. K. Varadan*, and V. V. Varadan*

the area weight density (tons of nodule per unit area) and the

ABSTRACT average nodule size, which, in turn will indicate the appropri-
. a c s aate type of mining equipment to be used.

f. Backscattered acoustic intensities are studied analyti- Remote acoustic sensing techniques provide an economical
~ cally for manganese nodule deposits excited by a nor- way to infer the presence and abundance of manganese nodule

mally incident plane wave. The primary objective is to deposits on the deep ocean floor. The coherent acoustic reflec-
use this remote-sensing technique to infer the nodule tion from the ocean bottom is analyzed over a nondimension-
concentration as well as its size distribution from the al frequency range ka - 2xfa/c from 0.2-5.0, where f is the
frequency spectrum of the acoustic response. frequency in hertz, a is the mean nodule radius, and c is the

For sparse distributions of scatterers, multiple scatter- acoustic wave speed in water. Previous studies were confined
ing theory has been used to obtain the coherent reflec- to an analysis of the coherent reflectivity only and provided
tion and transmission coefTicients frpm the sea floor only limited information about the nodule distribution.
covered with manganese nodules. The derived equations Measurement of the incoherent intensity provides additional
can also be used for densely distributed configurations information. An improved theoretical model is presented for
when considering higher-order statistics between. scat- determining both the coherent and incoherent intensities.
terers. The validiiy of the formalism is examined by Acoustic intensity measurements are common in under-
using the principle of conservation of energy and con- water acoustics. To compare the field measurements with the
sidering both the coherent and the incoherent inten- theoretical calculations, the incoherent intensity must also be
sities. considered because it becomes significant as the sounding fre-

S.Numerical results of acoustic intensities are highly quency increases. An intensity calculation based on the energy
frequency-dependent, especially when the nondimen- principle for nonabsorbing scatterers, which was investigated
sional frequency ka is greater than 1. The strength of the in Twersky (1957), is discussed here, *jid conservation of
acoustic intensity is proportional to nodule con- energy is used to check the numerical accuracy. The study,
centration. Different size distributions of nodules can be although, restricted to sparse nodule distributions so that
distinguished through use of the intensity measure- higher-order scattering can be neglected, nevertheless includes
ments. However only a minor difference is observed in some interaction among the nodules. The use of multiple scat-
the low-frequency range between uniform and Rayleigh tering theory to accommodate denser concentrations of nod-
size distributions. ules is currently being investigated. In addition. any given size

distribution of these nodules can also be considered, as de-
scribed in Ma et al. (1983). Calculations are presented here for
uniform and Rayleigh size distributions

-J INTRODUCTION

Manganese nodules, which also contain other minerals such
as nickel and copper, are of economic importance due to their REFLECTED AND TRANSMITTE ) FIELDS
natural abundance on the deep ocean floor. Because 70 to 80
percent of the metals they contain are currently imported into We consider a planar distribution of nodules modeled as
the United States, Graft(1984) and Spiess et al. (1983) predic- elastic spheres suspended in water. The inte-stitial space be-
ted that the mining and exploration of manganese nodule tween the nodules and the region below the nodule field is
deposits will become increasingly important and feasible. The assumed to be occupied by water This is an approximation.
physics of nodule deposits was discussed in Glasby (1977) and but the soft, water-saturated mud in which the nodules are
Greenslate (1977). Magnuson et al. (1981, 1982) described how actually distributed has an acoustic impedance that closelh
an acoustic remote-sensing technique could be used to infer matches the acoustic impedance in water relative to the

Presented at the 107th Acoustical Society of America Meeting. May 10, 1984, Norfolk Manuscript received by the Editor May 10 1984. revised
* r .. r'nuscript received June 25, 1985.

Laborty for Electromagnetic and Acoustic Research, Department of Engineering Science and Mechanics, The Pennsylvania State Univerzty,
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C, 1986 Society of Exploration Geophysicists. All rights reserved.
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LIST OF SYMBOLS

A = Area x, y, z - Rectangular coordinates
a = Size of nodule (radius) y.(-) - Spherical Neumann function
c - Concentration (Nna2/A) 0 - Scattering angle

ii = Unit radial vector in spherical coordinates o) - Angular frequency
ii, - Unit vector in the positive z direction in fl Solid angle

rectangular coordinates p - Mass density of fluid medium
f(O) = Scattering function a - Scattering cross-section

g - Density ratio V - Gradient operator
H - Depth measured from receiver - Wave function (acoustic potential)
h.") - Spherical Hankel function of the first kind (.) - Configurational average

Jm (.) - Imaginary part of (-) < - Configurational average holding ith
i w Imaginary unit (i2 1- -) scatterer fixed

j. () - Spherical Bessel function - Configurational average holding jtb and
k - Wavenumber kth scatterers fixed
N - Total number of scatterers
% - Number density (N/A) SUBSCRIPTS

O(.) - Order of(.)
P (cos 0) - Legendre polynomials L - Longitudinal wave

p - Pressure m, n - Indices (integer)
R - Reflection coefficient T - Transverse wave

Re (.) - Rtal part of(.)
r - Distance between nodules and the reference SUPERSCRIPTS

origin
T - Transmission coefficient inc = Refers to incident wave
U - Total scattered field * Complex conjugate
u - Individual scattered field + - z > 0 plane
v - Velocity vector - = z < 0 plane

manganese nodules that are highly reflecting. (high-impedance yet to be determined. The details of determining the scattert
mismatch to water). The theoretical model of the'problern is field are given in Appendix A.
based on the earlier work of Twersky (1957) and Foldy (1945). The total field above and below the nodule field ca; be
In contrast to Twersky, who considered rigid spheres, we con- written as
sider elastic spheres and retain all necessary terms in order to _
model the field scattered by a single nodule exactly. I'(R) = "'(R) + u(R - r,) = t""'(R) + U (R), (1)

Plane harmonic waves of frequency (o are incident normal
to the nodule field. The z-axis points upward from the nodule
field at z = 0. The average field above the nodule distribution where R is the field point which in our model is also the

is the sum of the downgoing incident wave of amplitude 'o location of the receiver and transmitter. In equation (1) w' is

and upgoing reflected wave whose amplitude differs from the the field scattered by the jth nodule located at rs on the -0
incident field by the reflection coefficient R. In the region plane, and N is the total number of nodules distributed overa

z < 0, there is a transmitted field of amplitude T'Po. The re- large area A such that N- x, A -. o, but no - N, A (the

flected and transmitted fields are due to scattering from the number density of the nodules) is finite.
nodules that includes multiple scattering effects. The average We are interested only in the ensemble averaged fields, be-
field on the plane z - 0 must be independent of position. cause the position of individual nodules does not affect th
Twersky (1957) approximated this field as the sum of the inci- response to a great extent. The configurational average lAp-
dent fields and the mean value of the reflected and transmitted pendix B) of equation (1) over all possible positions of the
fields evaluated at z - 0. Foldy (1945), in his description of the nodules weighted by the joint probability distnbution function
multiple scattering of waves by a random distribution of p(r, r2,. r,) and the size distribution (unction q(a1 is de-
spheres, assumed that the incident field that excites each noted by
sphere is simply the average field in the medium. This has -
come to be known as Foldy's approximation and leads to a OFt1> f da, d. , dr,
simple equation for the effective propagation constant in the

composite medium. We emphasize that this is not a single
scattering approximation. In our model we used Twersky's x 1P(R)mr, r,. r,] 1r! . . J. ,

approximation for the average field at z = 0 and took this to
be the field exciting the nodules in the spirit of Foldy's formal-
sm. The fields scattered by the nodules can be expanded using The incident field is independent of the nodlule icatn, t

outgoing spherical functions with coefficients that depend and we concentrate on the aier.ige, total scattered hield A,
upon the reflection and transmission coefficients which have cording to f-oldy w i, i. the held extiting each nodule mn& 't

% %:.,.....;..~~ d.... ... ..... ..t.) .... . .. .. .



Acoustic Response of Manganese Nodules 691

approximately described by the average total field given in For remote sensing the receiver-transmitter is in the far field of

qualon I From Appendix A. we write nodules, such that kIR - rjI >> 1. Then we use the asymptotic
form of the Hankel function in equation (4) as given in equa-

hre - r) F(a,. R - r1)<IP>(r,), (3) tion (A-10) and obtain
here + )(U °~ r d -

<U> no IFru d d

F(a, R - rJ) - (2r + -1)'=) h."(kI R - r, )p.(cos 0 ). (4)x f l + (R + T)/2], r

5TC) x 0 R+ ,(15)

The terms in equation (4) are explained in Appendix A. In where
equation (3) (P) (r,) is simply the average field evaluated at

f ~ ~~~- I f(2n + 1)'.(-Oq) a

rhe ensemble average of equation (3) may be written. Note k .. o J + o )
!hat it depends only on the location of the jth scatterer and and we use cylindrical polar coordinates so that
:hat

dr - r drd. (16)

dr2  fdr, p(r,. r2, , r, ) = p(r,) = A, (5) From Figure 2 we note that

IR - rl - H/cos 0. (17)
where p(r). the probability of locating a nodule at rj, is simply We further note that the integral in equation (15) is indepen-
1 4 for a random distribution. Averaging equation (3) yields dent of the angle € and hence

( .< U U> = 2nno To f( ') [I + (R + T)/2]elkm/ - IK 1 . - ,n o  F(R - r1)<9'(r 1 ) dr1, (6)(U ,nq 0 Jf6[1+(+

*here x (-H tan 0/cosO)de. (1)

FIR - r) - fF(a,. R - rqia) dad. (7) To solve equation (18) for kH > 1, the principle of stationary
phase (Lamb, 1932) is used. The solution can thus be written

and otaj is the size distribution function obtained from ana- in terms of the stationary phase angle y as

z nrg pictures of nodule deposits on the sea floor. This is used (U) - (2nno i'o/k)[1 + (R + T)/2)Tf)ea/-7. (19)
to describe statistically how different nodule sizes are distrib-
uted on the sea floor. The stationary phase angle -y is obtained by solving

The average field should depend onl on the angle of inci- d(kHl/cos O)/dO - 0, (20)
dence it and the height of the receiver-transmitter. Introducing
-election and transmission coefficients, and found to be "y - nit (n - 0, 1, 2. ... ) for this case.

<41R) (11R0+R[P"] > 0, (8)

OM -R f" + T), z< 0, (9) z ,J[ .i n €

where the complex conjugate denotes an upward propagating
*ave iFigure 1). Thus if T

- -4-, e'. (10)
I_ :en

U" >

ld-'P,- 
T)e < O, (12)

4.c note that the average field at z - 0 is independent of the
.oordinates The average field is constant and can be NODULES

,en following Twersky. 1957) as
'.IF, +4' IV, (' q R + T), 2, Z - 0. (13)

... , 131 1s used in equation 16 as the field incident on a

"< r.: t r Fo-r the total average scattered field, we obtain Q'-<VU

i '~R r i .'. F(R -rJl~ I IR + )21 dr,

Fi(; I The average scattered field excited by a normally inci-
114i dent plane wave

"1

-- .
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From equation (18) it can be seen that (U> can be solved 0U> [13, + (13, + I3o)/2 + O(03,)]Vo e - t
s, z < 0. (261

by integrating 8 from 0 to x/2. The only appropriate phase
angle in this region is zero. Therefore, for z > 0, the total The first terms on the right-hand sides of equations (25)and
scattered field (U) is found to be (26) are due to a single scattering whose excitation is the

incident plane wave ," only. This can be obtained by substi-
(U) - (2nno i'o /k)[(l + T/2) f(O) + (R/2) f(n)ek tuting v' at z = 0 for <W(r,)> in equation (6). The second

.Roe.  (21 ) term is obtained using the self-consistent approach. This is
.o .( essentially Picard's process based on initially approximating v

In equation (21), instead of f(0) multiplied by the reflection by the incident field v plus the single scattered wave, which.
coefficient R, the scattering function at 0 - ir (which is a com- in turn gives a series of orders-of-scattering for w in terms o(
pensation angle of zero degrees) is used. The reason is that the single scattering functions. Foldy (1945) introduced this

1 transmitted and reflected waves are different in propagation method to explain the orders of scattering because the higher.
directions by an angle of 180 degrees. This is also clear from order scattering is approximated by iteration using the lower-

Twersky (1957). Similarly, order scattering terms. The idea is that the average scattered
field (U> (or (U>-) can be obtained from a Neumann series

S(U> (2nno io /k)(I + T/2)f(x) + (R/2)f(Of)e-
• e  (22) (U(R)) = u4 + iu, (27

The reflection and transmission coefficients, the two un- where
knowns, can now be solved simultaneously from equations
(21) and (22) using Cramer's rule. The result is u, - no  {[u _ 1(r,) + u_ (r,)/2}[F(R - r,)] drs,

It - 03/[1 - 0. + (02 + 02)/4]. (23) -

and u+"= 0 ,Woea, z > 0.

T Co. - (3,2 + 13)2]/[1 - 13, + (13 + 13o)/4], (24) and

where u- , z < 0.

o - 2rrno if (0)/k, It can be seen from equation (27) that m - 1, 2 and 3 corre-
spond to single, double, and triple scattering, respectively.

and Generally speaking, for a sparse distnbution of nodules, i.,

3, , 21tnof(rr)/k. no u << I (no u -"C = no na2 ) in equations (25) and (26) the. suc-
cessive terms are smaller compared to the previous termor

Substituting the expressions for R and T into equations (21) Therefore, the higher.order scattering containing a high-ordet
and (22), respectively, we obtain value of nou can be neglected in the approximation of ihk

S+paverage scattered field (U>.

and
CONFIGURATIONAL AVERAGE OF THE SQUARE

OF THE TOTAL FIELD (4,2>

RECEIVER z Because nodules are randomly distributed on the sea floor,
their positions are not prepared in advance, we have no in-
terest in studying wave scattering by one particular distri-

7 "bution. Instead, an average picture better describes the nodule
field. We define "coherent scattering" or "coherent propap-
tion" only as an average over the ensemble of configurations
which are, in the present case, different top views from areas
covered with nodules. When an experiment has been per-
formed on a particular configuration, we can estimate the

H properties of the average over an ensemble with a high prob
ability of accuracy. In experiments several samples are used to
guard this probability. Interested readers can refer to any iccio ( .Oon statistical mechanics for further elucidation. Because the

nodules are randomly distributed, the scattered field U is not

0 constant: scatterers make an otherwise homogeneous medium
0 y inhomogeneous. The magnitude and phase of U will fluctuate

in a random manner Thus the total field at R. i.e., W(R), is also
O j 0ra random lunction and can usually be divided into average

field (W> and the fluctuating field w'.
0 ." 0 The square of the magnitude of the coherent field I() Iis

i . the coherent component. The average of the square of the
magnitude of the incoherent ficld is the incoherent component.

2. Geometry of scattering from nodules on a plane. The reason for introducing the incoherent field here is that the

.-i
% %
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'incoherent intensity," which is quadratic in the field ampli- or the average of the jth scattered field multiplied by the

tude, must be computed separately. This is because the gradient of the kth scattered field can be estimated as

averaging process will not commute with the nonlinear oper-V ,
itor of squaring the absolaie--magnitude of a field quantity. <U> z > 0, (33)
These values correspond to those which would be obtained k ,i(

experimentally 'by employing amplitude-sensitive and energy- and
sensitive measuring devices. Here the incoherent field is simply
the difference between <I y I>' and I<'4>11. Its usefulness is U-" --i u,) I<U>-1ri, Z < 0, (34)
explained in obtaining the second statistical moment of a fluc- j,,,

tuating field in statistical mechanics. This extra information where e, is the unit vector in the positive z direction. Although
also enables us to describe the amount accurately, as well as the gradient of uj gives the radial direction, the average direc-

the size distribution, of an average nodule field which has at tion should be in the z direction. This is to be expected from
" - least two unknown physical quantities. This is impossible to the symmetry of the problem (the energy flux is canceled out

achieve without solving higher-moment equations. The sum of along the x and y directions). Both equations (33) and (14) are
the coherent and incoherent components is the average of the thus important approximations in considering the energy con-
square of the magnitude of the acoustic field, i.e., servation.

< I 12> <W> I2 + < I '12>, (28)

where Wv' is related to U as W' - U - <U>, or CONFIGURATIONAL AVERAGE OF ENERGY FLUX <S>

r: <I I'> < <IUlI>2 -I <u>I1". (29)
SThe coherent component I<WlI 2can be obtained directly The energy flux (intensity) is defined as (Morse and Ingard,

from the known coherent field <W> [equation (4)]. It is of 1968),

interest here to find the incoherent component <1 '" 12> only. S - (pv + p-)/ 2 , (35)
Substituting the expression for U

t .4 an important quantity in wave propagation theory for con-

(U Z ) sidering energy conservation. Because we define

.v W (36)
into equation (29) yields

< Y • >from potential theory, we obtain
_= < u * u,> + < I U, <U>U,>.o(

,,h h j, J. & 'from the linearized momentum equation. Therefiore, the

(30) energy flux can be expressed in terms of as

* .S - iap(41Vw4 - wVsy)/2_ (38)
The above equation can also be written in the form

The configurational average of the energy flux becomes

<I' 12) = n JJ[(N - 1) (u<u),*/N (S> - ip(1[<4*V,> - <WVW>]/Z (39)
-- -<uJ>J<ukJ dr dr and it now contains both the coherent and the in:oherent

components.

Because w- - ' + U, substituting it into equation (27)
in + no J < I ujI 2>j dr (31) gives (taking the real part for magnitude)

.'V ..." V W/ I.C "

by using the definition of the configurational average. To cal- <S)s mpk Re + V <U>
culate the incoherent component <1 /'1 2> in equation (31). two iA

approximations were also introduced. First, (N - 1)/A is re- <U>VWi'6 <U*VU>-
placed by unity. This is valid for large N. Second, we use + + - j(40)

<uj* uk>s, - <uj>j<uk>k, (32) Because the operations of taking the gradient and the integra-

Ss d by Twersky (1957). For sparsely distributed s tion involved performing the configurational average com-
as uggste byTwesky(197).Forspasel ditriute sct- mute.

terers, equation (32) may be interpreted physically as neglect-
ing contributions to the excitation of a scatterer that arise <VU> - V<U>, (41)
from fluctuations of the average radiation that has been scat- and this relationship has been used in obtaining equation (40).

It should be noted from equations (30) and (31) that For scattered waves (S> is expected to be going outward
% away from the plane on which the nodules lie. Because the

<u_ (u> scattering characteristics are different in the positive and nega-
.,k ,tive z directions, it is necessary to separate <S> into two parts.

ILet
an be approximated using I<U>I '. This implies that

<S>= <S>*, Z > 0, (42)
F Y aun(V/-ik)u>ad

r -. I.,and
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<S)- (S)-, z < O, (43) z 4

where the expressions for <S) and <S) - are

(S> -w pk Re- + V-Uik -0 Y +

• .<U> °VWu"  <UOVU> ]  
4 z  1d

+ -- k + - , (44) 5 d"

and COIRNT ENCROY F.UX ICOMEANT ENIERGY FLUX

/- I*pk Re in+ V - FIG. 3. Control volume for energy flux consideration.<S> wipkR -ik +-ic <>

+ (U>-' +<U U>] (45)
-coutflow, for nondissipative scatterers, from any enclme

By substituting the expressions for W"*, (U>, and < -U> into volume vanishes (Twersky, 1957), i.e.,
equations (44) and (45), we obtain

______ Jf <S>-dA-. (53)
<S> - cook P o021, + Re -k '(146) To verify this, a simple control volume is assumed (Figure 3)

and For the upper half-plane (z > 0), we have

10 (S)- = pk (S) - dA - copk[1P(-i,) + (I <U>1 2)1j e,

X 2i C -O2i Re <UVU>-]
0 0 + WPk V f.dA. (54)

(47) For the lower half-plane (z < 0), we have
The second term on the right-hand side of equation (46) [or r"

the third term on the right-hand side of equation (47)] can be <S> dA - wpk(To2 [(-i,) + (T + T*X-6,)]
further separated into two parts. Thus

(U.VU>1 -j uj x(-: + a < -! U)'>) + ( I() (I.) + o)pk JI dA. (55)
-ik , \I / * Y_ - /

Note from Figure 3 that the total average energy flux has two
(48) separate parts. One is the coherent energy flux which hat

Using equations (48), (33), and (34), the average energy flux components either in the positive or negative z direction, but
<S>1 becomes not in the x and y directions. The other is the power scattered

into all directions (specified by 6,), called the incoherent eneru
and + copk [o (-6) + ()(U>I'), + i ] (49) flux, V and I-. After adding equation (55) to equation (54)

.and 
+f< >-2

, " <S > - Copk [W (_ -6.) + W 2 (T + T X - i.) <S > dA - , opk[W o (T + T O) + I< U > l * 12> - =

+ (l<U>-I 2(-_.) + 1-], (50) + mpk f I • dA. (56)

where

The term ua (V/ - ik)u appearing in I + and I - in the p p" term

V aaRe ( '-/ U is related to the scattering cross-section 'a (Appendix A). ad
Y7 Y- R uwe can show that

- Re _L.<u" V us' dr' (51) f d n
and I"- f dA- nod-W 2

1- Re uO k anI. dA -, n( + - no&wo.

'"' where

- Re -!- (u*Vuj)7 dr '  (52)
i}@ - J aq(a) da.

The energy principle simply states that the mean energy

OZ

I'
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fter dividing equation (56) by wowpk and neglecting the RESULTS AND DISCUSSION
mis I(U)> I a and l(U)- 12 (of order JRI' and I TI1, which

i u small compared with I R I and I TI, respectively), we obtain Tolstoy (1983) modeled nodule deposits as hard (rigid) scat-
terers on a hard ocean floor and considered only low-

(S> - dA - (T + T) + no6. (58) frequency cases. Nevertheless, the results are heuristic and the
f modeling is not realistic. We modeled manganese nodules as

r The first term on the right-hand side of equation (58) becomes elastic spheres whose measured properties are shown in Table
S by using equation (12)] 1. However, calculations using rigid spheres as nodules are

t:(T + T-) - -4n o Im (59) also done for the purpose of comparison.T+[(l/k. (5For a low area coverage of nodules, e.g., 0.2 percent, the
Substituting equation (59) back into equation (58), it can be nodule field is estimated to have about 150 tons/km 2 nodule 7
-m [by using the forward scattering theorem (Morse and deposit on the sea floor if a 3 cm nodule in radius is assumed.
Ingard. 1968)] that Although the area coverage is low, the rather high area weightr density proves to be interesting enough to the mining indus-

(S> • dA - no [E - 4m Im (f_(n))/k] - 0. (60) try. Note that in our calculations the bottom plane reflectivity
f was taken as zero to model more accurately the nearly acous-Equation (60) states that the energy flux coherently transmit- tically transparent sedimentary bottom in the Central Pacific

ta is canceled by the energy flux incoherently scattered. This Basin (Mizuno et al, 1976). In Figures 4 and 5 we present the
verifies the energy principle for nonabsorbing scatterers as computed values of the acoustic intensities which have been
mntioned in Twersky (1957). The proof of the conservation of livided by poakT'*) as a function of the nondimensional fre-
mergy, in other words, is done exactly as in the case of a quency ka for sparse distributions of nodules.
stgle scatterer by computing the net flux due to the exciting We see from Figures 4 and 5 that the contribution of the
and the scattered fields through a close surface containing one coherent intensity toward the total backscattered intensity is- scatterer. This is also explained in Waterman and Truell's qbite small; therefore, it can be neglected for high values of ka.paper (1960). As expected, the coherent intensity is a hundred times larger

:r': 6316 " 'lO I I-

- .- p
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164 : 1, 2  /" -,..

+2
(U) I <S>

- MODULES, C w.0216 C/:/"02 nodules. c a.0 2
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. o It"

.1 Nondimensional coherent acoustic intensity versus 5i Nondimensional total acoustic intensity versus nondinondimensional frequency mensional frequency
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Table I. Acoustical properties of manganese modules.

Concretion Wave speeds
type CL (m/s) C1. (m/s) CT/C (kg/m

Pacific 1 950-2 530 1 615-2 450 0,83-0.98 1 910-1 960
nodules [2 3503 [2 000)

Atlantic 2 125-3 215 1 625-2 580 0.69-0.80 1 890--2 070
nodules [2 6053 U1 9803

[1 average value
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APPENDIX A

For an elastic sphere in a fluid medium j - d1fj.(kTrJrl/d(kr r)]
2

, r a

y.,D - g(xt/x')y.,E y.i = YE(xi)
-j. D + s(x /x )y" E y - d[y (kr)l/d(kr), r - a

x,-ka. x 2 = kLa, x3 - kra
- g = density ratio of scatterer to fluid medium,

I., =j.(X ), j.2 -j. (X2). j,.3 -j.(X 3 ) D = 2rnn + 1)(1 - (j.4 /x 2j' 2 ) - (x2j-3 ) - n2 
- n + 2,

h - kL kr%, and

j =, - d[j.(kr)]/d[kr], r - a E - 4n(n + IXI -j.2/xj'. 2 Xl - x 3 j. 3 /j.3)

J.,1 - dj.(lk.))/d[k.], r - a - 2x 2 [x3j.i/j.3 + n2 + n + 2]
, J'3 - d[j.(krT)id[kr], r - a 2 [(l/2h 2 

- 111' 2/j;, -J/J,,I.

- d 2 J.(kLr)],;d(kLr)]'. r - a For a rigid sphere in a fluid medium(A-I)
2 - d'(j.(krr)]i[d(krr)3". r - a C. = Y., A2)

S .

% %

" 6 -."2
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i " r ,and
,J.R2 dll, - (A-3)

a -a + a -(4n/k
2 ) ( (2n + 1)/(l + C.). (A-7)

I, - Scattered wave intensity, .-o

I1 Incident wave intensity, Rayleigh size distribution function

a - 2n Ip,1I R2 sin 8 dOIpl 2, q(a) - (2a 3/0.74d') exp (-a'/1.48j'). (A-8)
, f%,

for spherical coordinates, (A-4) Uniform size distribution function

i = scattered wave pressure. a)- 0, avid (A-9)

p- incident wave pressure, 1, a-d

- 27t 1 .12 R 2 sin 8 pi 12. (A-5) Asymptotic expression for the spherical Hankel function of

the first kind

a* - 21 RI I R' sin 0 dOl I 2 ,  (A-6) h .1) (ks') k e '1" + w2 l, kr ) 1. (A-10)

a-.

APPENDIX B

CONFIGURATIONAL AVERAGE

Consider N scatterers which are statistically distributed on and (B4)
a plane. An ensemble of configurations can be characterized p(ri, r2 .  rN) - p(rj, r) p(r, r2 .  rNr,. rj)
by a probability distribution function of rs,

p- p(r,, C. rd. (B- 1 where p(r) is the probability of.the scatterer occurring be-
- -tween r, and dri and p(rj, rj) is the probability of the jth and

Equation (B-1) specifies the probability that the first scatterer the kth scatterers occurring simultaneously as specified.
lies in the element of area dr, about the position r, and the The conditional configurational average of a random func-seond satrrlies i h lmn fae r bu h oi

scatterer lin theelementof ar about the posi- tion F over the ensemble of configurations of N - I nodules
ton r 2, etc. The probability of finding such a configuration holding the jth nodule fixed can thus be defined in terms of
can thus be represented as the conditional probability distribution function p(r5 , r2.

p dr, dr2 ..., dr,. (B-2) r,/r) as

Now we introduce a random scalar function F which is a C C d
function of r,, F - F(r,, r2 , ... , rv). The configurational (F)s j .. - Fp(ri,. 2. rNIrj) -I dr., (B-5)

average of F over the ensemble of configurations can be given w0r
in terms ofp as

<F) - f"-"f Fp dr dr d .... dr.. (B-3) H dr. - dr dr. ..., dr...1

The conditional probability distribution function and the integration, equation (B-5), is not performed over drs.

p(r r,, r . r.r) - p(r1, .. r_, rr2, ..., r./r), Similarly,
p p N

which is useful in the averaging process, represents the prob- <F) ,- fFp(r1 r.. r/r r) dr..
ability of finding the N - I scatterers located at the appropri- f .3
ae intervals of r + dr with the jth scatterer at the fixed posi- (B-6)
ton r,, In the same manner, the conditional probability distri-
buton function Using equations (B-4) (B-5), and (B-6), (F> and (F>, can be

r, r2  . /r,. r) expressed in terms of <F>, and (FA in the following manner:

= p~r , r2. .... rj_ , ir, - ... rh_ ,, . .. r,/rj, rj), <F) - f <F~jpr,) dry,

represents two nodules at the fixed positions rs and r,.
ccording to the law for the conditional probability, it can and (B-7)

Swsen that C drr

P/r, r., , r.) - pirJp(r,, r2 .. , r,/r), (F>, " J (F)st r) drt.

ni .. A dN -' 0I . -%
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APPENDIX C
BACKGROUND OF THE REMOTE-SENSING TECHNIQUE

Existing prospecting techniques for manganese nodule de- lyzed to infer the presence and amount of nodules.
posits require lowering instruments, sensors, etc. by cable sev- The remote-sensing technique is based on the expec
eral miles to the ocean floor. For example, side-scan sonar acoustic signature of the bottom in the presence of nodul
imaging at ultrasonic frequencies is in wide use and provides a The characteristic acoustic response (as a function of fre-
detailed picture of the bottom, including profiles of individual quency) of nodule deposits is that of a " high-pass filter" tmal-
nodules (Spiess, 1980). nuson et al., 1981). The break frequency increases with a.

However, side-scan sonar imaging must be done relatively creasing nodule size. If the mean size is fixed, the strength d
close to the bottom and requires a long tow cable. Survey the return signal will increase with increasing nodule coo.
speeds are consequently slow and the process is, therefore, centration. The expected high-pass filter characteristic of ik
expensive. Moreover, ultrasonic frequencies are severely at- nodule response is the basis of the research. Ocean bottom
tenuated with distance so that remote sensing is ruled out without nodules have a relatively flat spectrum and the r.
when sounding in a typical water depth of 5 000 m with high- sponse is less independent of frequency. If a return from th
frequency transducers. bottom exhibits a high-pass filter characteristic, we conclud

- To increase the speed of surveillance and to reduce the that nodules (or other rounded objects) are down there. It s
prospecting cost, the cable from which the instrumentation is the qualitative difference between bottoms with and without
suspended should be eliminated. To do this, mount the instru- nodules that makes it possible (in principle) to sense nodula
ment in or near the survey ship to form a remote-sensing remotely. As for the quantitative results, detailed analys is
system. After sending the acoustic pulses remotely from the required and we present one here.
exploration vessel, the reflected return sound pulses are ana-

APPENDIX D

BRIEF REVIEW OF TWERKSYS (1957) WORK*

Twersky (1957) in his pioneering paper "On scattering and average separation of scatterers is large compared to thm
reflections of sound by rough surfaces" considered rough sur- sizes. However, this assumpticn made his heuristic approu
faces as a random distribution of arbitrary identical scatterers mation (that the average field with two scatterers held flind
(e.g., circular semicylinders and hemispheres) on free or rigid -could be replaced by the average with one fixed) feasible aW
base planes. allowed the development of an initial practical formalism

Starting with the boundary-value problem for a single con- without loss of generality. For the case of a dense distributm
figuration of scatterers (it was considered at that time to be of scatterers, multiple scattering involving a higher-order su-
difficult to calculate the far-field scattering amplitude of a tistics has to be considered. This is now under investigation ty
single scatterer due to the lack of good computing facilities) the authors for the scattering problem of nodule deposits.
the goal was to find the analytical, rather than numerical, Finally, the reflection coefficients, as well as differential scat.
results of the corresponding ensemble average energy flux tering cross-sections per unit area of rough surfaces (mutua
from rough surfaces excited by a plane acoustic wave. consistent in fulfilling the principle of conservation of enerul

The physical restrictions in Twerksy's paper were primarily were obtained by Twersky considering multiple-scatteritg tf-
from the assumed sparse distribution of scatterers, i.e., the fects.
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Multiple scattering of compressional and shear waves by fiber-
reinforced composite materials

V. K. Varadan, Y. Ma, and V. V. Varadan
Laboratory for Electromagnetic and Acoustic Research. Department of Engineering Science and Mechanics. "
The Pennsylvania State University, University Park, Pennsylvania 16802

(Received 15 October 1985; accepted for publication 19 December 1985)

A multiple scattering formalism using a T matrix to characterize the response of a single fiber to
an incident wave is presented to describe P- and SV-wave propagation in a fiber-reinforced
composite. A convenient numerical procedure is then developed to compute the effective elastic
moduli, attenuation, and phase velocity as a function of frequency and fiber concentration.

PACS numbes: 43.20.Fn

INTRODUCTION
effective elastic moduli as a function of frequency and con-

In the design of fiber-reinforced composite materials for centration.
structural applications, it is important to know the dynamic
properties of the composite as a function of frequency, fiber I. SCATTERING FIELD FORMALISM
properties, concentration, and distribution. It is the dynamic Consider a random distribution of N number of long,
structural properties that determine the response of a struc- parallel elastic cylinders embedded in an infinitely extended
ture to transient loads. The dynamic properties of the com- elastic solid (matrix) which are referred to as a coordinate
posite can be predicted by studying the propagation of elastic system, as shown in Fig. 1. Here, O and O denote the(Pand SVorSH) waves in such materials either experimen- centers of the ith andjth cylinders and can be represented by

- tally or theoretically. Waves propagating in such a medium polar coordinates r, and 0, and r and 0,, respectively. The z
will undergo multiple scattering, geometric dispersion, and axis is taken parallel to the axis of the cylinder, and P is any
attenuation. The resulting effective propagation constant is point in the matrix which is denoted by polar coordinate
hence complex and frequency dependent, the real part being system centered at 0.
directly related to the elastic properties of the composite. Let A, is, p be the elastic constants and density of the
Previously, we have given a multiple scattering formaiism matrix medium and Ai,/jap be those of the cylinders.
for the propagation of SH waves in a medium containing a Assume that either a time harmonic plane compres-
random distribution of correlated fibers.' The formalism is sional (P) or shear (SV) wave of unit amplitude and fre-
based on the quasicrystalline approximation (QCA) which quency a propagates normal to the cylinders. Choose a Car-
requires only a knowledge of two body correlations and the tesian coordinate system (see Fig. I ) such that the direction
T matrix of a fiber of arbitrary cross section. of propagation of the incident wave is along the x axis while

In this paper, we consider the more realistic problem of ofnt
compressional- (P-) and shear- (SV-) wave propagation
perpendicular to circular fibers. The only relevant theoreti-
cal studies of this type are those of Bose and Mall and Dattal
in the low-frequency limit (Rayleigh range). The appropri-
ate correlation between fibers is not incorporated in their
investigations. Even though they could obtain reliable values
for phase velocity in the Rayleigh limit, the relevant coher-
ent attenuation was not presented in Ref. 3, while some ap- .p
proximate value was presented in Ref. 2. However, the com- -
putations of frequency-dependent elastic properties such as 16 "
dilatational modulus, shear modulus, Young's modulus,
etc., require both phase velocity and coherent attenuation as
a function of frequency for a range of concentration. This
paper provides analytical and numerical multiple scattering
approaches for such a study. We have derived analytical ex- 0j
pressions for the effective propagation constant in the Ray-
leigh limit from our multiple scattering formalism. Our re-
suits of phase velocity agree with those of Ref. 2 and the X
Hashin-Rosen' bounds. Further, we have obtained numeri-
cal results for higher frequencies and higher fiber concentra-
tions. The results are presented in the form of plots of the Z
attenuation and phase velocity of P and SV waves and the FIG. . Random distribution of citcular cylinders and the geometry.
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2-" the displacement vector of the incident shear wave is along V O, = = (1/k, )V [H, (k, r - r, )e' ] , (10)

they axis. Suppressing the time dependence e the dis- kVX (. (/k,)VX[H.(k, Ir-r, )e 'a ]l
placement vector corresponding to the incident wave is de- ((l/[ k -

noted by

(P) wThe Re 4,. and Re 4, are given by (10) and (11) with Han-

u e","P, (SV) wave, (1) kel function replaced by Bessel function J., and a., 0., A.,

andk,x, (rVh wave, and B. are undetermined coefficients. In Eq. (I 1), 0, refers
where k. to the angle that r - r, makes with the x axis (see Fig. I).
in the matrix, Since (u + u,) is the total field in the matrix medium,

k, =2lcp; k, = w/c,; c. 4(A + 2/t)/p; the expansion coefficients of the field scattered by the ith

C. (2) cylinder may be formally related to the coefficients of the
. field that excites the ith cylinder through the Tmatrix:

The waves undergo multiple scattering when they im- 7-1

pinge on the cylinders, giving rise to a displacement field a. T1 a - . ) (

inside the cylinder also. The displacement vector corre-
sponding to the scattered field is denoted by u' while that Substituting (8) and (9) in (7), we obtain
corresponding to the refracted field is denoted by ul. The

displacement fields uand u, satisfy equations of motion giv- X [A . Re io(r - r,) + B. Re *. (r - r,)]

en by
"' (k 2 - - ')V V . + k 2V I] U l + U ' , (3 ) =u o (r ) + X a ' ' r  + ( -r,) ]

[(k- 2 -k,- )VV+k,-V2 ]u, +u, =0. (4) (13)

In Eq. (4), It should be noted that the series on the right-hand side of

k= 2/c,; k, = o./c,; (13) is expressed with respect to the center of the ith cylin-

"c 2#'1' + C )/p c, = (5) der. In order to express these quantities with respect to the
center of thejth cylind.;r, the following addition theorem for

are the P and SV wavenumbers and wave velocities, respec- cylindrical vector wave functions is invoked:
tively, inside the cylinder.

The displacement vector can be constructed using.two 40,(r - r,) r, ( -

scalar potentials 0 and 0b which are solutions of the scalar -(14)

wave equation for compressional (0) and shear (0) waves

and is given by (r - r,) 1)+ m Re . (r - r,) (r,,) ,

u = VO + k,VX (20). (6)

The expansion of the solution of the scalar wave equation in where r. = r, - r.

terms of cylindrical functions, namely, products of Bessel or Substituting (14) in (13) and simultaneously expand
Hankel functions and trignometric functions, is well known. ing the incident wave in a Fourier-Bessel series expansion
The outgoing scattered waves centered at the origin of the and then employing the orthogonality relations for the vec-
cylinder are given in terms of Hankel functions, while the tor basis functions, we obtain
exciting field must be regular at the origin and hence given 1L 2 \

by Bessel functions. . (15)
The total displacement field at any point (say P) in the

matrix is the sum of the incident field and the fields scattered In Eq. (15),
by all the cylinders. The field that excites thejth cylinder u N

is, however, the result of the incident field u0 and the fields L = -e%"h85,, + " (-1 ) + 'a . (r.)
scattered from all the remaining scatterers. Thus, at any , (16)
point r in the vicinity of thejth cylinder,:-.~~~i ,,'%2 + " .( l""' _ ,

: .- u,(r) -= uo tr) + te (r - - r,) (7 ),, ,

We now expand the scattered and exciting fields in where 6. is the Kronecker delta. For P-wave incidence.
terms of vector cylindrical basis functions 4o. and 0.: P = 1, and forS-wave incidence, P = 2. In Eq. (15), L and

= " M contain unknown coefficients a and P of the scattered
u'(r) = [a',,4 (r - r,) + fl.*.(r-r,)] , (8) field. The coefficients a and,6 are, however, related toA and

. - -B of the exciting field through the Tmatrix as defined in Eq.
u(r) -- [ Re (r-r) (12). Substituting Eq. (15) in Eq. (12), we obtain a system

-- [A'l -. of linear equations for the scattered field coefficients:

where (6' ; ('T 1 ,cTfM (17)
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In the sequel, we continue the analysis for P-wave inci- tered field coefficients a. and fl are coupled. To uncouple
dence and study the phase velocity, coherent attenuation, these equations, we multiply Eq. (18) by (T 12)-I and Eq.
dynamic moduli, etc., both for low and higher frequencies. (19) by (T 2) -1 and subtract to obtain
Without much detailed presentation, we also present similar fl.- (T 2 2) (T 2)'a - [ (T) (T 2 ) 'T" - T 21]
results for S-wave incidence.

For only P-wave incidence, Eq. (17) can be rewritten 0 a + X (F)aI), (20)for identical cylinders as

a T'rN) where a'(r.) stands for the propagator term given by(a',. = + " '(,u)
"-.)"+ for P waves. In writing (20), we have

N dropped all the summation and subscripts to avoid cumber-
+ ,. 1 (- some looking expressions. With Eq. (20'. Eq. (18) now ex-

,-_ plicitly gives the scattered field formalism for elastic wave
(18) propagation through the composite medium.

and In Eqs (18) and (19), the scattered field coefficients
.~, a  i 1N explicitly depend on the positions of the cylinders. For afl. T 21, .. + Z ( - I''a..O.. _, (r.)

•)i,,s ,- " system with a large number of cylinders, it is more meaning-
ful to study the effective propagation characteristics in the

+ T T( - 1 medium rather than the details of the multiple scattering
- J processes that take place. Thus a configurational average is

(19) performed in Eqs. (18) and (19) over the positions of all
where cylinders except thejth, which is assumed to be held fixed.

The details can be found in Ref. 1. We thus have, for identi-r ~~~ao .,Gt.,

cal scatterers, the average scattered field coefficients of the
It can be seen from Eqs. (18) and (19) that the scati scattered P wave given by

(a T 1 (a + (N-I1) f(a')uo'(r,.p(r,1r,)dr, ) + T12T 22(T 12)-1 f,(dz),o'(r)prjr,)dr,
-T T 2  (T ")T" - T21( a~p(rj~r,) 2Cr,)dr, +1 (a"A ~p(rIri, o(u~'rj~ drk)

a . (21)

i--." where ( ), and ( ), denote the configurational averages with For uncorrelated, impenetrable cylinders g(x) 1 or
the ith scatterer and both the ith andjth scatterers held fixed, 1/(1 - ) for x > 1, where c is the concentration of cylinders
respectively, andp(r Ir,) andp(r,, rj[r,) are the joint prob- and g(x) = 0 forx< 1. This approximation is valid only for
ability distribution functions. The notation ol (r. ) stands for very low values of c (very sparse distribution of cylinders).a( - I) " "*',. _,, (ri,), the propagator for S waves. In Eq. Several models of the radial distribution function such as the
(21 ), S' denotes the cross-sectional area of the medium ex- Percus-Yevick approximation, the convolution-hypernet-
cluding the circular area of radius "2a" which is the hard ted chain approximation, the Born-Green-Yvon approxi-
core radius or the minimum distance between two scatterers, mation, and the self--consistent approximation are widely

- each of radius "a." adopted in numerical computations.
The above equation is a hierarchy which, when iterated, In our calculations, the Monte Carlo calculations of

will involve higher-order conditional probability distribu- g(x).6 which give a virtually exact solution to the equations
tion functions. However, the hierarchy can be truncated by of state, are used for c up to 0.55.
invoking the quasicrystalline approximation (QCA) sug- To study the coherent or average P-wave field in the
gested by Lax.5 According to the QCA, effective medium, we assume that the average field is a plane

P wave propagating in the x direction just as the original
•2 (.plane wave incident in the matrix but with a complex propa-

2 gation constant K, = KI + KI, which is frequency depen-

(a) - (ak), i#j#k. dent. The real part K P is related to the phase velocity and the
The probability distribution function in Eq. (21 ) can be imaginary part K I is proportional to the coherent atenu-

conveniently written asp(rA, r,/r,) =p(r r,)p(rj/r,) and ation of the P wave. Thus
p(rJ).Jg(x)/S, x>l, (3 ai-X er , X<I,(4

where we have assumed that the scatteiers are impenetrable Equations (22)-(24) are substituted in Eq. (21) and
b and that for a translationally invariant system, p (r,/r, ) de- the extinction theorem can be invoked to cancel the incident

pends only on Ir, I = 2ax. In the statistical mechanics litera- wave term on the right-hand side of Eq. (21 ). The resulting
ture, g(x) is known as the radial distribution function. equation is
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12a

=. " iA + T ['12 ( . 22._- .. .) _.I.X.. . + _...._.], (25)

where

I ,. ",-21rno(k2  K 2 [2k,aJ_. (2, )H_.(2k,a) - ___._. (2,,)J_.(ZKa)]P KP

+ 4a2 _.(2k,ax)J _.(2ax )[g(x) - lIx)dx (26)

and12,. is obtained by replacing k, in Eq. (26) by k,. In Eq. Z, = (1 + ct ) (I + 2t) [1 + ct2 (I + e)]
(26), no ( = N/S) is the number density of the cylinders in F, 1 I - ct2( - e) - 2c'tt2

"." the matrix.

To obtain a similar expression for the average S wave in H, - [1 + ct( + ) ] (to + t, + 3ctotj)

the effective medium, we assume that the average field is a + t2( 1 + Cto ) (I + 2Ct) (1 + tJ/I)
plane S wave propagating along the x direction Just as the
original plane S wave incident in the matrix but with a com + F/

2
t[ + ct2 ( 1 + )( + Cto)

plex propagation constant K, =K +iK which is fre- QP= [1 +Ct 2(l +E)](to+ t1 )
quency dependent. By assuming (6.--), = Y.e" 1K, we can

-' obtain a dispersion equation for Y.. - 2ct2 1 0 
+ t( + ct ) ] + t2(1

Equation (25) is a system of homogeneous linear simul- + C't, / 1 + ct( I + le) - 2ct2 ( 1 + cto)]
taneous equations for the coefficients X, for P waves. For a
nontrivial solution, the determinant of the coefficient matrix C = (c,/c,),
can be set equal to zero which yields the desired dispersion to = - (A, +/u, -A -S)/( A + +A),

equation. t' = (p, -p)/2p,
The dispersion equation obtained for P- or SV-wave in-

cidence can be solved for the effective propagation constant t2 -MO' -,u)/[ A + 3u) +-u-(-A +,a)

K. or K s , respectively, as a function of k,, k,, and number for S-wave incidence,
density of the cylinders no. The determination of K. or K, is K,. 2  Z, (I _-C)

3 
'r (F,H, - Q,Z,)

necessarly numerical except in the long wavelength or Ray- . + i I c "4 F
leigh limit. This will be discussed in Sec. II.

(28) " .
I1. RAYLEIGH LIMIT SOLUTION where

Inthe Rayleigh or low-frequency limit, the size of the Z, = (I + 2ct,)[l +ct2 (l +E)] , F, = 1 +ct,(l -e)
scatterer is considered to be very small compared to the ini- H, = 1 + f ) + cf, +)]
dent wavelength. It is then sufficient to take only the lowest
order coefficients in the expansion of the fields and the T- + 12e( 1 + E-

3 1 2
) ( 1 + 2ct,),

matrix elements" and the set of simultaneous equations for Q, = t1(l +e-111)[I + C12 ( - C)] + t 2E( 1 + e-312
)

the unknown X, X,, X_, X2, and X_2 for effective P-wave
properties and YY, Y -, Y-,, Yp and Y-, for effective shear-
wave properties. The dispersion equations in terms of effec- 3 ,
tive P and S wavenumbers K, and K, are obtained as fol- ,0
lows: 

k •O01

for P-wave incidence,

L_+ C 0~ -* (k,a)2 (FH, ,Z
lk, =P , + c 4 F /"

(27) 2 //

where

TABLE I Matnal properti used to caiculalsons V a__ -wey

Deftty P ( k I/fm') Ait'' I %J U M C 0 40 6C 8C cc

Boron 11130 16 6' . 10' '!- 0"lC
F.Ajumsnun20 6 X6 - 10"' 1 g" 10D FIG2 Phw lleioy m u -8onenrt fav bcm in tilllminurn n h
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exact agreement with Eq. (4.26) of Ref. 9.

Following the work of Christensen," one could define a 111. NUMERICAL RESULTS AND CONCLUSIONS

two-dimensional bulk modulus as (E, (A -i-M), an Computations ofspecicdamnping or coherent P- (SV-)
expression which can be derivedfro Eq. (27), as given by wave attenuation K/k, (or Kk,) and phase velocity

C .A -,"I -A- ")"

(0 -c)(A, +P1) +CA+ ( +c)p
which agrees exactly with Eq. (28) of Ref. 9.
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shown in Figs. 6 and 7 The anoaly of the attenuation for
Vw par ,4 ,,~, xu~ . u mtfn~u fre 0 55 is ,umply the result of strong multiple scateing

effects for such a highly packed system. This sees possible
only for P-wave incince as senin Fig. 6.

Fgur, 4 iim prr~-nt the frequenicy spectrum ofth Fromt the effective wavenumbers K~a or K~a, one could
-'r.ait.ict.frPn aw rsetvlfrfu i easily compute frequency-dependent elastic propertes as

neniruifor id hea i waves.rsetvl.frfu nidence s hoYwn in Ftgs &- 13. These properties are very useful in the
p'hai eloity is aiwa'si higher at lower frequencies for all deinocie-enfre opsts
However. for P wave incidenice there is tFnflsitiofl ri5on ACKNOWLEDGMENTS
where the phase velocity increaaes at higher frequencies at
hitgher nncentrations Pus hetiaviot may he due to in emin- This woct was supportad, in pezm by Rockwell, Interna-
-ni resonance for a high <oncentrsion composite A similar tional. T'he authors would WLke to thank the reviewers for
'whavuov has alsoi heen *Aerved by Kinra " and Varsani t their helpful comments and suggestions.

4 amtiew in the study .4 )-D particulate composites.
The orresponding results for speciflc damping are

V 7?t K Voiraask.V V VredkaidY MaJ AwLSc Am. 74. 1874

'IL SMm ld A . MA ek. Pby Wie 2 1 (1974)
'I Xea Dowt ft.,ou by. a2 r1952) wmauwmia A
U-11tP*IS 0 QNliu Cha~lmri~ysw edited by944

*Z le YorS 19 WRo J0p A3.23(9

Wa Wood. ;h. .pm aid y modk a 41 (1 k Pb%4)ld 2.

V Khe Pasei I' NSh.ad V~ed V Vsdlk I Mack gst Sobd 2mY7, 315
FirM Ch"NjI Mehmj ',(nyte Aleatqasi wviulua Nowi Ywdm,~~a fr'iric

39 AM~A* SOC Air' .101 WO No AJ~ V5'adW of *I Snsftsfty coOowts -natenats 339



LX
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. ABSTRACT

Earlier results for electromagnetic wave propagation in discrete random media assumed spherical statistics in

discribing the spatial distribution even for nonspherical scatterers. The appropriate pair correlation function for

nonspherical scatterers can be. in general, obtained by the Monte Carlo method which is essential in analyzing the

. nonspherical statistics. This paper presents new results using the nonspherical statistics in the investigation of

multiple EM wave scattering by aligned dielectric prolate as well as oblate spheroids randomly distributed in space.

The comparison between the previous results and those using spherical statistics show that approximating the spatial

.' distribution of nonspherical scatterers using the spherical statistics will yield either high or low effective properties

of the random media.

i. INTRODUCTION

In the extant wave scattering literature, scatterers are generally being modeled as spherical ones and the

complexity of the analytical problem can therefore be reduced. However, in nature, most scatterers are not spherical

in shape. Thus, the sphere model will not be appropriate in some real applications. Even worse, when consider wave

propagation and scattering in a collection of nonspherical scatterers with a considerable concentration, in addition to

the shape of scatterers, the spatial distribution of scatterers cannot simply be described using spherical statistics.

The fact is that the possiblity in finding another scaterer in the neighborhood of a given scatterer becomes uneven

in the radial direction which is not the case for a randomly distributed spherical scatterers due to the unsymmetry of

7 the problem.

To make the problem tractable, nonspherical scatterers with rotational symmetry properties randomly distmbutcd

in free space are first considered. Fortunately, scattering responses from most nonspherical scatterers of this kind

are able to be respresente4 by the T-matrix (Varadan and Varadan, 1980). But unless the concentration of those

nonsphencal scatterers(in this case. lossless dielectric prolate(oblate) spheroids for EM wave study) remains at a

lower level, the spatial distribution of those nonspherical scatterers cannot be, even known from our intuition,

correctly described by the spherical statistics. To just see the shape effect and distriguish this from those previous

approximations made using the spherical statistics even for nonspherical scatterers, we consider only the aligned

case which means the symmetry axes of the spheroids are all parallel to the direction of the incident wave.

The nonspherical statistics involved in the analysis is to introduce the pair correlation function for aligned
4%:
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spheroids. With the help of high speed digital computers, the Monte Carlo method can be employed to obtain the

K pair correlation function for aligned spheroids and some numerical values of the function are presented in this paper.
Finally, computations of the effective attenuation rate as well as the phase velocity using the nonspherical statistics

in studying the electromagnetic wave propagation through randomly distributed aligned spheroids are performed.
When compared with numerical results for nonspherical scatterers using the spherical statistics approximations, the

attenuation is found to be either over or under-estimated.

Multiple Scattering FormulationI

e4 We consider N(N --+ -) rotationally symmetric oriented scatterers randomly distributed in a volume V(V -4Jk so that the number of particles per unit volume no - N/v is finite, see Figure 1. Only the most important details

°. -

that lead to the dispersion equation involving the pair correlationn are presented and for all intermediate steps, we

tJ
rfnally, readeraton of.K thed eetiv att uaio ra1a9el79]eph. eoct sn tennphrclstsis.

Monochromatic plane electromagnetic wave giving rise to an electric field are assumed to propagate parallel

to the rotational axis of symmetry of the scatterers (the a-axis), see Figure 1. The field scattered by the ith scatterer

is denoted by Es so that the total field E at a point r outside the scatterers is given by

E(r) - E0 (r) + I Ei(r) . (1)

The field exciting the ith scaterer Ee is given by

Ei e(r) - EJ0 (r) + 1: E.3(r). .(2)

From (1) and (2), we note that

E(r) - Eie(r) + E 1
5(r) (3)

so that the exciting and scattered fields must be defined in a self-consistent manner. These fields are expanded in a

set of vector spherical functions as follows:

E-'(r) - [bam/' ReMomr - r) thrcreReNaer r[V)]; a., I r-ri 2a (4)

and

E1
5(r) - X fl~om immr - ri) + ComiNcym~r - ri,)]; I r - ri1>2a (5)

where Mbc and {BC are expansion coefficients of the exciting and scattered fields, respectively. The vector

sphercal functions {M.N are defined by [Stratton , 19411.

These expansions are substituted into (2) with the following definition of the T-matx of a single scatterer

Is-
Er)-Eer +ESr 3
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CamiCM Cr~.~m21 (T rcm22 ml(6

(where the T-matrix is independent of the Position of the scatterer) which results in an equation for the exciting field

coefficients fb,c} alone. This equation averraged over the position of all scatterers where the QCA [Lax, 19521 is

involved, and we arrive at an equatioin for the configurational average <b> and <c> of the exciting field coefficients

with one scatterer held fixed.

We assume that this average field (the coherent field) propagatesi in a medium with an effective complex

wavenumber K - (K1.. iK.2)k in the direction of the original incident field in the discrete medium. Thus, we obtain

.~b '>i t
Y ~X . r<bcysI i ,Iaml

and

<ccrmj'>i - LZ amietJC . r~ 8

where {Y.Z} are expansion coefficients of the average exciting field. The diipersion equations then take the

following form:

-n' 01 ip(.i)'X(JH)){Y~lWf(T 0 I 1 n t) 11 '00 (n~n.) + (7.l eln ) 217 e (n.nX)1

+ Zel[(Tel Oln )12WOn1'X+ * (TC' eln )22XO'DXl (9

=n~n il(, H {(Y~lp((T0 1 On)l I xo(n,n)A + Croipc ) W4I,(n.n .fl

+Zo [(Tel Oln )12 X' ,n..X) -(To e1n)22 ee(nn'X)I110

where the functions {W.x) are defined in (Bnngi et a1., 19811 and (JH) at an integral given by

0H Kkn)-2r01XI.Xsindi)f G(r,9)jk( Krhk(kr)Pkcose)PipctsO)r~ldr I I I

In the above equation. G(r0) i the pair correlation function for aligned spheroidal scatter. Pfcos6) ii the Legendrc

polynomials and Iand h are the spherical Bessel and Hankel functions. respectively For spherical %catterer%,

Eq ( I1 can be reduced to the following form

0 H4 - c[2kajX(2Ka)hX(2k&) -2Kahk(2ka)jk(2Kaj/{(ka)' (Ka) I

*24cJ1 IS(x). I lh,(2kax)jX(2Kaxhxdx

* Eq (12) is actually a special case of (11) by neglecting the azimuthal angle dependence for the pair correlation

FUnction. Therefore, g( 5) in Eq.) 12) is simply the pair correlation function for spherical %LACtiirr!',

.oncentration (c.4ta 3n(y3) and a is the radius of the %catterer The prime denotes the derivative

T'lE PAIR CORRELATION FOR ALIGNED SPHIEROIDS

The pair correlation function fior aligned spheroidal particles can be expanded in the I(egendre pohnomnials a%~
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G(r) In~ gn(r)Pn(coso) (13)

where the coefficients depend only on the distance between particles and azimuthal angle (see Figure 1). The

coefficients gn(r) can be evaluated during the Monte Carlo simulation [Metropolis, et aL, 1953] by using the

orthoganalicy of Legendre polynomials. For a system of hard particles, the required probability in Monte Carlo

simulation is simply checking the overlap criterion. Overlap is decided whether the center to center distance for a

pair of spheroids is less than d which is defined by

d -('2b/Tl)(l-coS
29.+cos 29rn12Y 1 2  (14)

41herc T1 is the aspect ratio of the spheroid such that TI >1 for prolate and I for oblate spheroids and b is half :hc

.ength of the axis oi- symmetry for the spheriod (see Figure 1) The plot of g,(rPi( 2n. I, vs normalized rad,

Jitance, e rb, for aspect ratio 2 0 and 15.7% concentration is shown in Figure 2 For c.omparison, the

,enter center correlation function go)r) calculated using Pertus-Yevick approimation is also presented

RESULTS AND DISCUSSION

The real and imaginasry part te K I and K 2 respectively, of the effective wavenumber K, arm related to the phiase

Svelocity and attenuation of the effective medium They can be obtained by solving the dispersion equations 'Ji and

:0simultaneouslyv

In order to %how the difference in electromagnetic wave propagation characteristics. e g K I and K. results

'iei n the approisimatiion for randomly distnbuted sphemids using the spherical statistics (Circurns,ribing Sphcrc

A\,,-roxmation and Equivalent V'olume Approximation IVaradan ei l &1.1961) are compared with those using

'i~tnphcricl aStatistics M.oreuover, without ;onsidering intaftion arming scatterers, results based tin sirtgc

ucaitering theory are also included to justify multiple sc attering effects for scattere ri with consider a)'

oncentratsons

in rable 1. numnerical results3 for Phase Veloii1' &s Well as for attenuation are presented for prolair iphri

*,th an aspect ratio 1 5 and I5 percent concentation uinder different considerations I )ri sees that the rc~u. s

,.'tjincd from single -ocattering theory give much higher Attenuation than all other .ases and this alito has 1,cui

hserved for all the subsequent computations Generally speaking, the circumscribing sphere assumption prrd.,Li

%cwe attenuation wrtilc ihe equivalent volume assumption predicts a higher attenuation However. the phase Nciot .:s

% much less sensitive to the statistics considered As a matter of fact, the phase velocitv for a rtonresonant us.. reic

randim medium will not he criiclly11 affected by the pair correlation function For iiblate spheroids. this hrair

.ilo holds and can he shown in Table 11 which is for oblate spheroids with an aspect ratio 66h(' and 1 PerLT ri

% oncentration

In coiicuson. we would like to emphasize the importance in introduc ing the nonsphirrical :nit,'



ainalyzing the scattering from densely distributed nonspherical scatterers. The approximations made for the spatial

diibution of nonspherical scatterers can produce results which either over or under-estimate the effective properties

,Ahich, in this case, is the attenuation of the effective medium.
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Table I Effec-tive K for prolate spheroids with an aspect ratio 1.5 and 15.7 percent concentration

Monte Carlo Equival Volume Circumscribing sphere Single Scattering
Simulation Assumption Assumption Theory

th K vk Ki,.k K I/k K 2 /k K I k K2 /k K2/k

1 10(947 0 4922(-5) 1 0947 0.3340(-5) 0 109 01 4)
00~0 0 .1491(4) 1 0950 0.2677(-4) 1.0950 0.1054(-5) 0.8721(-4)

109~S5 0 1(481-3) 1 0955 0.9060(-4) 1,0953 0 1050(4) 0,2945(-3)

014 1 0960 0 2170( 3) 1 0961 02156(-3) 1 0957 04235(-4) 0 6989(-3)

r) S 10967 0 3894( 31 1 0970 0.4232(-3) 1.0963 0.8415(4) 0 1366(-2)

01 1 ()9'7 0 6346( .3) 1,0980 0.7357(-3) 1 0971 0 1623(-3) 0.2363(-2)

1) I 98 099841 3) 1 0992 0.1176(-2.) 1,0980 0 2884(-3) 0 3749(-Z)

1) 4 1 000 0 1519(-2) 1.1006 0.1768(-2) 10991 04539(-3) 0.55851-2)

0 1 1013 0 2175(-2) 1 1022 025341-2) 1 1004 0.6841(-3) 0 7916(-2)

~1 0 1027 0 2894( -2) 1 1040 0.3495(-2) 1 1021 0. 10381-2) 0 1078)-I)

Table 11 Effective K for oblate spheroids with an aspect ratio 0.667 and 15.7 percent concentration 5

Monte Carlo EquivaJ Volume Circumscribing sphere Single Scaitcring '

Simulation Assumption Assumption Theory
*.i KI k K-,.k K A' K2 /k K 1Ak K-,/k K-)/k

% %-
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0.1 1.1088 0.6620(-5) 1.1087 0.3493(-5) 0.2146(-4)
0.2 1.1094 0.5203(-5) 1.1094 0.5380(A4) 1.1093 0.2862(-4) 0.17330-)

0.3 1.1105 0.5655(-4) 1.1105 0.18650-) 1.1 103 0.1008(-3) 0.5937(-3)

0.4 1.1121 0.2614(-3) 1.1121 0.45910-) 1.1116 0.25410-) 0.1436(-2)

0.5 1.1141 0.64980-) 1.1141 0.9409(-3) 1.1134 0.5352(-3) 0.2875(-2)

0.6 1.1167 0.1287(-2) 1.1167 0.1723(-2) 1.1157 0.1008(-2) 0.5103(-2)

0.7 1.1199 0.2360(.2) 1.1197 0.2927(-2) 1.1185 0.1770(-2) 0.8328(-2)

0.8 1.1236 0.4144(-2) 1.1231 0.4719(-2) 1.1219 0.2978(-2) 0.1274(-1)

0.9 1.1277 0.6882(-2) 1.1270 0,7318(-2) 1.1258 0.4893(-2) 0.1846(-1)
1.0 1.1320 0.1077(-1) 1.1309 0.1098(-1) 1.1302 0.7909(-2) 0.2545(-1)

I,-.
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.9SUIU-MARY

In this paper we wish to consider the effect of multiple scattering, scatterer geomctry, statistics of the positional
and orientational distribution functions on the propagation of time harmonic electromagnetic waves in a medium
containing a random distribu'tion of non-spherical scatterers. Some of the features that complicate the analysis are - (1)
the size of the scatterers is comparable to the wavelength of the propagating wave; (2) the volume fraction occupied
by the scatterers need not necessarily be small; (3) the impedance mismatch between the scatterers and the host
medium need not necessarily be small. These in turn necessitate some of the effects we wish to focus on namely -
detailed modeling of scatterer geometry and scatterer response, multiple scattering effects and the effect of corelatiQns.
We have already addressed many of these factors [1] and in our proposed talk we wish to present some recent results
using non-spherical statistics for the second moment of the field.

In collaboration with Professor William A. Steele of Chemistry Department at Penn State, we have generated
by Monte Carlo simtulation the pair correlation function for spheroidal particles as a function of the distance between
them and the direction of the vector joining their centers. At present we are generating the pair correlation function for
randomly oriented spheroids and are also considering the effects of inter-particle forces as well as higher order
correlation functions for clusters of particles. All of these have been incorporated into the multiple scattering
calculations and compared with available experimental results. In contrast to previous work more attention will be
focussed on the second moment of the field.

This paper will fit in very well with the scope of the symposium in the areas of mathematical methods for
random media, characterization and modeling of random media and also interface quite well with some of the other
papers in this area that we expect will be presented at the ACARD symposium.

1. PREFACE

The average or effective properties of a random medium containing inclusions of one material or voids
distributed in some fashion in a second material called the host or matrix material can be conveniently studied by
analyzing the propagation of plane waves in such materials and solving the resulting dispersion equations. Since
waves propagating in such a two phase system will undergo multiple interactions with the scatterer phase, it becomes

r natural to consider multiple scattering theory and ensemble averaging techniques if the distribution of the inclusion
',I. phase is random. In this paper, a multiple scattering theory is presented that utilizes a T-matrix to describe the

response of each scatterer to an incident field. The T-matrix is simply a representation of the Green's function for a
single scatterer in a basis of spherical functions. In this definition, it simply relates the expansion coefficients of the
field that is incident on or excites a scatterer to the expansion coefficients of the field scattered when both fields are
expanded in the same spherical wave basis (1]. In theory. the T-matrix is infinite, but in practice the T-matrix is
truncated at some size that depends on the ,atio of size of scatterer to the wavelength and the complexity of the

geometry. Formally, the T-matrix includes a multiggl description of the field scattered by the inclusion and this
requires a propagator for multipole fields to describe the propagation from one scatterer to the next. Finally, the
technique presented here is for a random distribution of scatterers which requires an ensemble average over the position
of the -catterers and requires a knowledge of the positional correlation functions.

In previous studies [2,31 we relied on spherical statistics for hard spheres, generated by Monte Carlo simulation
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or by the Percus-Yevick approximation even for non-spherical scatterers. Essentially, this increased the exclusion
volume surrounding the non-spherical scatterer, and artificially restricted us to smaller concentrations in order to
prevent the statistical spheres from overlapping. In the present study, these restrictions are removed by using a new
Monte Carlo simulation developed by Steele (4] for non-spherical scatterers, that is based on expanding the two body
correlation functions in Legendre polynomials. This permits us to consider the angular correlations that exist for
non-spherical oriented scatterers. The final equation for the formalism is the dispersion equation which describes the
propagation characteristics of the coherent or average filed in the effective medium. The numerical solution of this
equation yields the effective complex, frequency dependent propagation number which is also a function of the size,
geometry and distribution of the inclusion phase. The effective wavenumber is a function of the direction of
propagation in the effective medium if the medium is effectively anisotropic. If, for example, the scatterers are spheres

por if the non-spherical scatterers are randomly oriented, the effective medium will be isotropic, but if the medium
contains aligned non-spherical scatterers the effective medium will be anisotropic. The effective wavenumber can Lie
related to the effective material properties of the medium which are also complex and frequency dependent. For
anisotropic materials, by solving the dispersion equation for different directions of propagation with respect to the
aligned non-spherical scatterers, we can construct all components of the material property tensors of the effective
medium such as the elastic stiffness tensor or the dielectric tensor, see [5].

In this paper, a systematic study is also made of first order contributions to the second moment or incoherent
intensity of the wave field propagating in a discrete random medium. The second moment, which is traditionally
defined as the correlation function of the component of the field fluctuations in any direction Ca, is denoted by
II - < (C AE) ( C A E) >,where A E -E - < E > is the fluctuation of the field. Since the field fluctuations
can be expanded in a multiple scattering series, each term of which contains sums on all possible scatterers, it is
evident that we can divide the resulting terms into two sets; one involves considering only those terms in which the
same scatterer contributes to a particular order term in each field fluctuation, and the other involves distinct scatterers.
This latter set of terms will contribute to the incoherent intensity only if statistical correlations between scatterers are
laken into account. The first catevorv of terms are equivalent in spirit to radiative transfer theory since it is essentially
the intensity of the field scattered by each scatterer that propagates from one site to another. Even for this set of terms,
positional correlations between scatterers should be taken into account at volume fractions exceeding a few percentage,
but these terms contribute to the incoherent intensity even if correlations are neglected.

Numerical results for aligned and randomly oriented oblate and prolate spheroids using the new correlation
functions have been obtained and compared with previous calculations for spheroids that used spherical statistics. We
foresee important applications of these new results to electromagnetic wave propagation through aerosols, which are*
non-spherical and often consist of aggregates and also in other cases where non-spherical scatterers are involved.

2. EFFECTIVE WAVENUMBER FOR THE AVERAGE FIELD
IN A DISCRETE RANDOM MEDIUM

Let the random medium contain N scatterers in a volume V such that N -* *, V - ,a, but nQ - N/V the
number density of scatterers is finite. Let u, i, . u i be respectively the total field, the incident or primary plane,
harmonic wave of frequency (o, the field incident or exciting the i-th scatterer and the field which is in turn scattered by
the i-th scatterer. These fields are defined at a point r which is not occupied by any one of the scatterers. In general,
these fields or potentials which can be used to describe them satisfy the scalar or vector wave equation. Let Re on
and Ou On denote the basis of orthogonal functions which are eigenfunctions of the Helmholtz equation, see Morse
and Feshbach [6]. As explained in the introduction the subscript 'n' is an abbreviated superindex and vector notation is
implied. The qualifiers Re and Ou denote functions which are regular at the origin (Bessel functions) and outgoing atinfinity (Hankel functions) which are respectively appropriate for expanding the field which is incident on a scatterer
and that which it scatters. Thus, we can write the following set of self-consistent equations:

Ik N
u u° +- u s i  " uei+ uS u°+ t uj+ u , (1)

u°(r) - p exp (ikk, * r) - In ani Re 4n (r - ri) (2)
nV

0 ue i " n (X-'Reo n (r-r i); a< r-ri <2a (3)

ue ,_nfniOun(r ri); r-ri a , (4)

where ani and fni are unknown expansion coefficients. We observe in Eqs. (3) and (4) that "a" is the radius of the

N.- % N %
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sphere circumscribing the scatterer and that all expansions are with respect to a coordinate origin located in a particular
scatterer.e.adu.poie 

e+USsthThe T-matrix, by definition simply relates the expansion coefficients of and u i provided uei + u5i is the3 total field which is consistent with the definitions in Eq. (1). Thus (11,
i i i(5

fn In. Tnnan, ('

and the following addition theorem for the basis functions is invoked:
Ou On (r - rj) = n' nn' (ri -rj) Re n' (r -ri) (6)

Substituting Eqs. (2) -(6) in Eq. (1), and using the orthogonality of the basis functions we obtain

cri  - ai +I I (ri - rj)TJaJ (7)

This is a set of coupled algebraic equations for the exciting field coefficients which can be iterated and leads to a
,T multiple scattering series.
,, For randomly distributed scatterers, an ensemble average can be performed on Eq. (7) leading to

< t>i  - ai + <-4- (ri- rj) T<aJ>ij> i  (8)

where < > ijk denotes a conditional average and Eq. (8) is an infinite hierarchy involving higher and higher1jk..

conditional expectations of the exciting field coefficients. In actual engineering applications, a knowledge of higher
order correlation functions is difficult to obtain, usually the hierarchy is truncated so that at most only the two body
positional correlation function is required.

To achieve this simplification the Quasi-Crystalline Anproximation (QCA), first introduced by Lax [7] is
invoked, which is stated as

<J>ij .<aJ>j (9)

Then, Eq. (8) simplifies to

-<>i al + <cr(r i - rj)TJ<>j>i ; (10)

an integral equation for <ai>i which, in principle, can be solved. i particular, the homogeneous solution of Eq. (10)
leads to a dispersion equation for the effective medium in the quasi-crystalline approximation. Defining the spatial
Fourier transform of <a>i a

<a>i - eiKri Ci(K) dK (11)

and substituting in Eq. (10), we obtain for the homogeneous solution

Ci( K)(r - rj) TJ P(rjlri) e K(r-rj) dr CJ'(K) (12)
j~i

If the scarterers are identical, then

Ci(K)- CJ(K) - C(K), 13)

and thus for a non-trivial solution to <oa1>i, we require that

- (r,-rj) TJ P(rri)eiK(irj 0 (14-

In Eqs. (12) and (14), P(rtjri) is the joint probability distribution function, In order to perform the integration in
(14), we need a model for the pair correlation function. For non-spherical scatterers, the pair correlation functnT I
depends not only on the length of the vector connecting the centers of the scatterers, but also on the direction ot thi'
vector and the orientation of each scatterer. If the scatterers are spherical, then there is no dependence on duirction and

% %
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orientation and the statistics are said to be spherical or isotropic. In both cases, the scatterers are not allowed to

overlap, i.e. an infinite repulsive potential is assumed between scatterers.
For aligned spheroids which are rotationally symmetric, the dependence is only on the angle 0 between the

separation vector and the symmetry axis which is taken to be the z-axis of the coordinate system, as shown in Fig I

There is no dependence on the azimuthal angle 0. The joint probability distribution function is then written as

thG(x)/V; ri-rj > R(0) (15)

In the above equation, G(x) is the pair correlation function for aligned spheroidal scatterers. x - r t - r, and R(9) is the A
minimum center to center distance when the spheroids just touch one another at one point, such that the line joining
their centers subtends an angle 6 with the symmetry or z-axis of the spheroids. In this case the statistics are not
isotropic but are a function of direction. Equation (14) can hence be simplified to

I-nof a(x) TG(X)eiK'4dxI =0 (16)

where (l/V) - (N - 1)/V - no. The integral in Eq. (16) is simply the spatial Fourier transform of coTG. The
zeroes of the determinant as expressed by Eq. (16), yield the allowed values of K as a function of the rucrostructure as
determined by the T-matrix, the number density no and the statistics of the distribution as determined by the pair
correlation function. In general K, the effective wavenumber is complex and frequency dependent.

The dispersion equation as given in Eq. (16) is very well suited for computation. Using appropriate forms of
the basis functions on which are solutions of the field equations, the T-matrix of the single scatterer can be computed;
for example, see Varadan and Varadan [1]. The translation matrix a. although complicated in form for spherical
functions, can nevertheless be computed in a straightforward manner. The spatial Fourier transform of oTG is fairly
easy to compute because the integrand is well behaved for large values of the interparticle distance. In recent years,
considerable progress has been made in Monte Carlo simulation to describe the statistics for non-spherical hard
(impenetrable) particles by Steele. The joint probability functions have been expanded in a series of spherical
harmonics and radial functions with unknown coefficients. The coefficients are evaluated directly in the Monte Carlo
simulation. For aligned prolate and oblate spheroids, these results have just become available. The excluded volume
for these geometries is also spheroidal. This has been implemented in calculations of the effective wavenumber in
media containing random distributions of aligned spheroidal particles [8]. It can be seen that correct statistics
conforming to the shape of the particle is needed to get correct results at volume fractions exceeding 5%.

2. [COHEREN7 NTENSITY

The total scattered intensity is directly proportional to the second moment of the scattered field. It is known that
the total scattered field is a combination of the average scattered field and the fluctuation of the field due to the random
distribution of scatterers, i.e., u - <u> + u, the incoherent component of the scattered intensity can be obtained as

<uu > - <uu > - <u><u>*, (17)

To first order, that is taking only the single scattering contribution to each scattered field, we obtain

<uu'> - <Iu']2>- < Iuj u"k> - I <uj>*F<uk>

- <u Uk> + < <Iuj 2 > - Z1<uj>*<Uk>. (18)
j*k k j k

The ensemble averages in Eq. (18) can be written by integrating over the random positions rj, rk, etc. of the scatterers.
Thus,

< u > n2 f f((N - l),N) <u juk>jk - <uj>j <uk>kJ drjdrk
Sno I <! u 2>J drj. (19)

The second term in the above equation, which is proportional to no , is the ordinary single scattering approximation to
the incoherent intensity and the magnitude of the incoherent intensitl in any direction is proportional to the bistatic
cross section of a single scatterer. The first term proportional to no is due to the effect of positional correlations
between pairs of scatterers.
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U3 UkJk - 'ujj .uk *k

and the first term of Eq 1 )) vanishes.

In order to obtain the incoherent intensit, for higher -,nentrauons, the p.Lr :rrel.it ,n .r. r

into consideration Recentl, Tersky [1)831 has moditied Eq .1P1 tor a dense ditr;buti n r, .i: - .

incoherent intensity has the form:

<,u I2> no " fJ [G(rj- - 11 <u J <uk>k dr J drk

0 + no j2>drj.

Equation (21) is the final form used in our computation for the incoherent ntensit. up to the first order IiLAr:e:

higher order contibutions to the incoherent intensity become more and more important if the impedance rn:'.. i:

between the scatterers and the host medium as well as the propagation distance are increasing A detailed pi,:turf - -.

the ladder diagrams in explaining the higher order multiple scatterng processes can be found in our previous pa;',-
In the calculation, a knowledge of the coherent field is still required since the average scattered field <u is in.

in the formalism. The average scattered field <uj> holding the j-th scatterer fixed can be expressed as. .usng I

<uj>j - En. Trn' <cnJ>j'n 4r - rj).

L The exciting field coefficients ctnJ are initially unknown in Eq. (22). However, the average f :. :
exciting the j-th scatterer is known after defining an effective propagation constant K whILh is ompiex -

iK 2 ). Following this definition, the average or effective exciting field <aCnJ>j can be written as

<tnJ>j - An e iK ko r,

where k0 is the propagation direction of the incident wave. The unknown effective exciting amplitudes +.

can be solved by invoking the extinction theorem.
If we substitute Eq. (22) in (21), we obtain
< u' 12> - no2 J ' [G(rj-rk) - l]-Tnn <ctnJ>j nY-n-Tn-n- <crtn-.k>*kn-, drjdr k

+ n0  ITnn' <CanJ>jn' 12 drj.

We notice that in Eq. (24), the multiplication of the T-matrix and the effective ex..iting field i, :;ner;r _..-
integral and the pair correlation function. In fact, the integral of the pair correlation funcutm turn',t.: , ." '

dimensional spatial Fourier transform of the pair correlation function [G(x)-l]. Is order to in' est.atr .-..c
of the incoherent intensity, we calculate the major normalized quantity which is defined as folk,*

<Iu> (si td (kr)2 (v/V)

S- 2c(YTnnAnYn,)( ,TnnA.,Yn.,)* F( ko, K. r ) (K., k ka, .a

where Yn' are the normalized spherical harmonics, (Yimo.(0,0)), Z Ls the distance ,t ,
'-e n'(n" or n") is the index representing l and m; r is the radial distance from the ,. r'

observation point, v is the volume of a single scatterer and V is the A hole iern ....

in Eq. (25) is given as

- F - l+n f (G(x)-l]exp[i(Kk o -krr* - dx

For spheres, the radial distribution function depends only o n the +e~ir. r" .
is performed numerically using tabulated values of Gi% from %,I .n:c ,
integral equation for non-overlapping spheres. For non .,phr. .. --
integrations on orientation and distance and the ntegration "-. r,--

again obtained from Monte Carlo simulation
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3. RESULTS AND DISCUSSION

In order to study the characteristics of the incoherently scattered wave intensity, we choose electromagnetic
waves as probing waves simply because there are a number of applications in remote sensing.

By sending plane electromagnetic waves through scatterers we intend to find, first, the angular dependence of the
incoherent intensity and the influence of different polarizations, e.g., vertical and horizontal polarizations. If it is not

,- specifically mentioned, scatterers are assumed to be spherical or spheroidal ice particles with a relative dielectric
constant e = 3.168 embedded in air. Fig. 2 presents the normalized incoherent intensity versus observation (scattering)
angles. The forward scattering angle is, in our case 00 and therefore the backscattering direction is 1800. The
nondimensional frequency considered is 0.6 which is equivalent to a physical frequency of about 14 GHz if a 2 mn
particle is considered.

Taking a further look at Fig. 3, we can conclude that the vertical polarization gives more angular dependence of
the incoherent intensity than the horizontal one. There is an extremely low intensity (i.e., a deep minimum in the
curve) that occurs at 900 at a ka-0.6. This phenomenon happens again, however, at a higher observation angle of 1250
when the frequency ka is raised to 2. There is no polarization difference at the forward and backscattering directions for
the incoherent intensities.

In Fig. 4, we compare the backscattered intensity calculations with and without the effect of pair correlations.
These results tell us that if the intensity is calculated without considering the pair correlation function when the
concentration becomes even moderately high, i.e., 5%, one is able to see the difference in the magnitude particularly in
the low frequency range.

Finally, we want to say something about the effect of the pair corllation function. In order to tell the
importance of its effect on the final first order scattered intensity, we simply calculate the function F which appears in
Eq. (25) and has been defined in Eq. (26). As can be seen from Eq. (26), it involves a Fourier transform of the pair
correlation function and it contains an effective propagation constant K; hence it depends on the properties of the
scatterers, the concentration, frequency and angle of observation. In Figs. 5 and 6, we can see that the Fourier
transform of the pair correlation function dominates the scattering response particularly in the low frequency range and
in the forward direction. In the high frequency range, it does not affect the scattered intensity much. Also, we observed
that the intensity decreases after a volume fraction c - 15% , which is also a fact pointed out in Kuga's experiments.

From Fig. 7, it is clear that the difference in obtaining the effective K is quite large if the spherical statistics is
employed in approximating the nonspherical statistics. Therefore, for nonspherical scatterers of considerable
concentrations, the incoherent intensity can be mistakenly estimated using Eqs. (22), (23) and (24) which all involve'
the effective wavenumber K. In addition, the pair correlation function G(x) in Eq. (26) may even conaibute more to
the difference depending on the concentration and the observation angle considered.
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ABSTRACT

Recently, an interesting phenomenon has been reported as a result of a series of optical backscattering

experiments conducted using collimated light sources (lasers). A locally high intensity maximum has been observed

in the range of 7c - e < 0 < x + e where E is of the order *of milliradians and e - i is tile backscattering direction.

Albeit similar phenomena found in backscattering from various random media, e.g., scattering of electrons by

impurities in metals and light scattering from random rough surfaces, this is the first observation of enhanced

backscattering from suspensions.

In this paper, based on multiple scattering theory, we use the improved two scatterers T matrix program, which

takes all back and forth scattering into account between two scatterers and considers the multiple scattering effect, in

the intensity calculation. The widths and magnitudes of the backscattered intensity peak of our computations compare

favorably with those of optical experiments.

INTRODUCTION

Backscattering enhancement or similar phenomena have been observed in various backscattering experiments,

for example, the Anderson localization from scattering of electrons by impurities in metals (Abrahams et al., 1979

Bergmann. 1984], scintillation in turbulent mediat (Yeh et al., 1975; Rino et al., 19821 and speckling from light

scattering by random rough surfaces [Dainty, 1984; Hecht, 1986]. And generally speaking, the enhanced backscattering

fr, can happen when (i) waves scattered by turbulent media - continuous random media (e.g., atmosphere); (ii) waves

scattered by a collection of randomly distributed scatterers with high concentration; (iii) waves scattered by moving

scatterers or by scatterers having Brownign motion; (iv) waves scattered by scatterers (moving or stationary) in a

turbulent medium ; (v) waves scattered from random rough surfaces; (vi) waves scattered by scatterers in front of a rough

-.,
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boundary.

The reason for this is partly that although waves are travelling in random media, the propagation of waves in

such media (cases (i) - (vi)) is accompanied by multiple scattering as well as specific coherent effects and the

enhancement is caused by positive interference of all the scattered waves. The recently observed enhanced

backscattering phenomenon from dense suspensions appears to be the similar result which cannot be explained by

oradiative-transfer theory. Albeit the cyclic diagram in conjunction with point scatterer approximation introduced in

multiple scattering theory to explain the enhanced backscattering [Tsang and Ishimaru, 1985]. however, the

experimental observations all deal with scatterer's size large compared with the incident wavelength [Kuga and Ishimaru,

1983; Albada and Lagendijk, 1985; Wolf and Maret, 1985]., and therefore a detailed computation based on anisotropic

scattering for fimite size scatterers is essential. In addition, the back and forth scattering between a pair of scatterers,

which has been neglected in the ladder approximation, may have major contribution toward backscattering rather than

in the forward direction mentioned in one previous paper [Bringi et al., 1980] coauthored with us.

In this paper, based on multiple scattering theory, we use the improved two scatterers T matrix program, which
takes al back and forth scattering into account between two scatterers and considers the multiple scattering effect, in

the intensity calculation. The widths and magnitudes of the backscattered intensity peak of our computations compare

favorably with those of optical experiments.

LNCOHERENT INTENSITY FORMULATION

The detailed derivations' ind intermediate steps in obtaining the final expression for intensity can be referred to

our paper (Varadan et al., 1987). The average incoherent intensity < I > can be obtained as follows

< I > - n 0 < luj? >j drj

+ n0
2 # < UkUj >jk g(rjk) drk drj

- n0
2 If <Uk >k < uj >j drk dr (1)

where n0 is the number density ( no. N/V), uk is the scattered field from the j-th scatterer, < >j and < >jk are

conditional configuration averages holding the positions of the j-th and both the j-th and k-th scatterers fixed,

respectively, and g(rjk) the radial distribution function for spherical scatterers. Equation (1) is an exact expression for

the incoherent intensity < I >

In order to perform the computation, we need to make approximations for the expression of < 1ug 2 
>j and

< ukuj >j which are both unknown, in terms of the effective exciting field < uk >k which is known (Varadan ct al.,

1985]. By neglecting higher order statistics and considering only the two particle pair correlation function [Varadan et

al., 1987], we can obtain

n<I> nL TJ <aJ>j] FJ TJ<aJ>j ]*dr.J

+ no02 Z f I J Tj Cjk Tk < a k I I 'Pj Tj (Yjk T k < a  >k ]*g(rjk) drj drk+ n03 Z- If I 'j wJ jk T k  Tm < am>
Z JJ~JToi kin m~a >m ] x

Tj T k Tm <am >]~ j) ~ r
x [ 0FJ TJjk k m T m g(rk) g(rkm) drj drk drm
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+... (ladder diagrams)

+n2 F k , ak
0+ no ZJ [,kT >k I I' Tj < a J >j 1* [ g(rjk) - 1] drj drk

+.- n 2 . Tk Tk 0 kj Tj <J >j ] ' 'J TJ OJkT<c k >k]g(rjk) drj drk

+ no 2 1:[ kTkokj T j jkTk< a k> k x

x [YJ Tjajk Tk k kj TJ < aJ >j]* g(rjk) drj drk

+ " (cyclic diagrams) (2)

In Eq. (2) Tj is the T - Matrix of the j-th scatterer [Varadan and Varadan, 190, pk is the outgoing function (Hankel

function) of the k-th scatterer and okj the translation operator. Each term of the two series in (2) represents a certain

order of scattering. For the same order of scattering, the cyclic terms are proportional to a higher power in the number

density. Thus at low concentrations cyclic terms contribute less than the ladder terms to the the same order of

scattering. Eq. (2) can be represented diagrammatically as follows,

(a) Ladder Diagram

0K x 0 -'d <<0 -

- . . . ... I I -. (3

(b) Cyclic Diagram

K A KK

... .. . - <). <-... -

In fact the so called cyclic terms can all be summed if one replaces the infinite series in (4) with the T-matrix of

a pair of scatterers which considers all the back and forth scattering between them. The back and forth scattering

between a pair of scatterers, which has been neglected in the ladder approximation, may have major contribution

toward backscattering rather than in the forward direction mentioned in one previous paper [Bringi et al., 19801

coauthored with us. Eq. (4) may hence be written diagrammatically as

T;' (5)

r- > .*

where Tik , the two scatterer T- matrix has the following form [Varadan and Varadan, 1981]

b TJk R(ro)TJ[ lo(rk)Tko(rkj)TJ'l [I +o(rjk) TkR(rkj)] R(-r)

.. ., r&%



+ R( ro ) Tk[ 1 -a(rkj) Tj a(rjk) Tk ] -1 1 + (rkj) TJ R(rjk) ]R(- ro ) (6)

In the above expression, R( ro ) is the regular paA't of the translation matrix a( r o ), rjk = rj - rk and ro = (rj + rk)/ 2 .

RESULTS AND DISCUSSION

In general, at low concentrations, both the magnitude of scattered intensity and multiple scattering contribution

are not strong enough to reach the threshold of the enhanced backscattering. When the enhanced backscattering

happens, the width of the intensity peak is proportional to the imaginary part of the effective wavenumber. In other

words, the width is inversely proportional to the mean free path which is getting smaller when the concentration is

getting larger (the average separation distance between two scatterers is getting smaller). The calculated mean free

path length, which compares very well with that of the experiment, and the data used in the intensity calculation are

shown in Table 1.

To perform the calculation, one needs to adopt the cylindrical coordinates instead of the spherical one to match

the experimental set-up which brings the complexities in converting the spherical functions to their cylindrical

counterparts. Furthermore, in order to compare with the experimental results, especially the magnitude and the width

of the intensity peak, the proper integration limits must be taken care of very carefully. The widths and the

magnitudes of the backscattered intensity peak of our computations compare favorably with those of Albada's

experiments in which the receiver used has a very small field of view and, hence, gives a much better signal

resolution (see Fig. 1). However, due to the truncation of the orders of scattering due to the tremendous amount of

CPU time required, we did not obtain a full match.
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Table 1. Data used in the calculation [Ref : Albada and Lagendijk, 19851

Concentration no  (i) 14.1 x 1016 /m3 (corresponding volume fraction c = 0.09587)

(ii) 3.48 x 1016 /m 3 (c = 0.02366)

% . (iii) 1.49 x 1016 /m3  (c - 0.01013)

Particle size d = 1.0911.m (in diameter)

Refractive index n (latex 5100) = 1.6

Refractive index n (distilled water) = 1.33

He-Ne laser wavelength X - 633 nm

Nondimensional frequency kd (2nd/a) = 1Q.8294 (>> 1)

Calculated effective K - K1 + iK2

(i) Kl/kw = 1.01266, K2 /kw = 0.1514 x I6- 1 ( c - 0.09587)

(ii) Ki/kw = 1.00231, 1 C2/kw - 0.3839 x 10-2 ( c = 0.02366)

(iii) Ki/kw . 1.00093, K2 /kw - 0.1618 x I0-2 ( c = 0.01013)

Mean free path (Albada's experiment) - 2.6 gim (for no = 14.1 x 10 1 6 m3 )
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Calculated mean free path (from K(2) =2.5 gtm
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ABSTRACT

This paper investigates the second moment (average intensity) of an EM wave field propagating in a medium

containing densely distributed nonspherical scattcrers whose positions are random. The effective propagation

constant K obtained from our previous work, using the nonspherical statistics in the investigation of multiple EM

wave scattering by aligned prolate and oblate dielectric spheroids, and the appropriate pair correlation function for

nonsphcrical scatterers obtained by the Monte Carlo method are required in implementing the moment equation to get

the numerical results for intensity. The comparison between the results using correct nonspherical statistics and

approximated spherical statistics indicates that even a small difference for the effective propagation constant K will

produce a remarkable difference in intensity. Numerical results for average intensity scattered by spherical particles

using our intensity formalism are also presented and compared with some microwave measurements. The extension of

the present work is to study wave propagation in a medium containing a random distribution of randomly oriented

nonspherical scatterers and investigate the isotropic properties of the medium.

INTRODUCTION

The statistical moments of a wave propagating in a random medium are of great interest for use in

., communication, probing and remote sensing. The present paper following the trace of our previous work, in which

the first moment of a random wave field has been carefully investigated using appropriate statistics, starts to

examine the effects of nonsphcrical statistics on the second moment (average intensity) of a wave field propagating

in a medium consisting of randomly distributed nonspherical scatterers. In our intensity formalism, shape factor, size

distribution, orientation distribution and physical properties of scatterers can all be considered, however, the
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intensity equation for densely distributed scatterers requires the pair correlation function which is available at the

present time only for simple shaped scatterers with special alignments.

To make the problem tractable, nonspherical scatterers with rotational symmetry properties randomly distributed

in free space are first considered. Scatterers of this kind whose scattering responses are able to be respresented by

the T-matrix [Varadan and Varadan , 1980]. Further, we consider only the aligned case which means the symmetry

axes of the scatterers are all parallel to the direction of the incident wave.

In the calculation of intensity, without losing generality, we used the distorted Born approximation in the

intensity equation in which the required effective propagation constant K is obtained from our previous work

[Varadan et al., 1986, 1987] using the nonspherical statistics in the investigation of multiple EM wave scattering by

aligned prolate and oblate dielectric spheroids. The pair correlation function for nonspherical s'r.tterers is obtained

by the Monte Carlo method which has been introduced in our paper [Varadan, et al, 19871. The companson between

the results using correct nonspherical statistics and approximated spherical statistics indicates that even a small

difference for the effective propagation :onstant K will produce a remarkable difference in intensity. Numerical results

for average intensity scattered by spherical particles using our intensity formalism are also presented and comparcd

with some microwave measurements.

MULTIPLE SCATTERING FORMULATION FOR THE INTENSITY

We consider N(N -- .-) rotationally symmetric oriented scatterers randomly distributed in a volume V(V -- -) so

that the number of particles per unit volume no - N/V is finite. For the scattering of waves by those scatterers

Z located at r1 , r 2 , . .rN , we represent the total field outside the scatterer by

U(r) - uo(r) + Z uj (r - rj). (I)

where uo is the incident wave field and uj the field scattered from the J-th scatterer. If the scatterers are randomly

distributed In space, the total field can be divided Into two parts and expressed u

5 U(r) - < U(r) . (av
We call < U(r) > or < U > the average or coherent field and v the fluctuation or incoherent field. The angular

brackets < > represent the configuration or ensemble average whose definition is quite common in statistics.

Similarly, we average the "intensity" (or the second moment of the field) JU12 over the ensemble, and write the

"average total intensity" as

"-< JUI2 > =< U > 12 +< I v 12 >

= <U> 12 + V (2)

where I < U > 12 is the coherent intensity and can be determined if the average field < U > is known. However. th-

incoherent intensity V which is the ensemble average of the absolute square of the field fluctuation is not a directly

obtainable quantity. By the use of (1) and some opcration rules for the configuration average, the incoherent

intensity V in (2) can be written as

V-Z < uj > +ZZ<ukuj >- Z<uk><uj*> (3)

where the superscript "*" reresents the complex conjugate of the attached quantity. (3) is a finite sum though "N",

the number of scatterers, can be fairly large; its computation becomes impractical even for a moderate N and in most

,''?''' %~ N N% . .. .
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cases impossible. In terms of an appropriate probability distribution function and the conditional configuration

average, (3) can be expressed in the following integral form
, = o I< [uj[ 

2 >j drj

0 i <ukl2  >jk G(rjk) drk drj

-=, "-"-no 2 11 < Uk >k < uj* >j drk d rj (4)

where < >j and < >jk are conditional configuration averages holding the positions of the j-th and both the j-th

and k-th scatteren fixed, respectively. G(rjk) the pair correlation function, for aligned spheroidal particles, can be

expanded in the Legendre polynomials as [Varadan el al., 1987]

G(r) = 1n gn(r)Pn(cosf)

where the coefficients depend on the distance between particles and azimuthal angle and implicitly on the

concentration of scatterers. For spherical scatterers, the pair correlation function becomes the radial distribution

function g(rjk) upon which spherical statistics bases. Eq. (4) is an exact expression for the incoherent intensity V.

If the scatterer locations are random and independent of one another, only the first term on the RHS of (4)

remains. This is the single scattering approximation to the intensity. Otherwise, in addition to incoherent single

* scattering, a relatively coherent intensity appears s the contribution of the second term grows. As the concentration

of scatterers increases a local order is introduced in the near field of the scatterers since the particles can only be

packed in a limited number of ways. In order to proceed further with the computation of the incoherent intensity as

2 jstated in (4), we need expressions for <uj>j; <Iujl2>; and <ukUj >.

Distorted Born Aoproximation

In order to calculate the incoherent intensity V from (4) an approximation needs to be made for <u.12 >. as

well as for <uku >jk , which are both unknown. If we consider only first order scattering, we can use the distorted

Born approximation (DBA) as follows:

< ukUj >jk < uk >k<uj >j (5)
This approximation was used by Twcrsky (Twcrsky, 19571 in solving the rough surface scattering problems and has

subsequently been used by several other authors. Using (5), in the distorted Born approximation, (4) can thus be

written as

V- n0 J < uj >j< uj >j drj

+ no2 j <uk>k < uj >jG(rjk)l- 1 drkdr. (6)

Equation (6) represents the incoherent intensity in the DBA. Its source is the coherent field, <uj>j. Later we

show that the average scattered field < uj >i is related to the average exciting field when we neglect the field

fluctuations in the field exciting a scatterer. Equation (6) tells us that the second term has a contribution to the

intensity whenever the i-th and j-th scatterers are close to each other (position dependence), otherwise the

contribution can be neglected. Eq. (6) is a deterministic equation since only the average exciting field is involved

and the calculation is straight forward as long as the pair correlation function Is known.

% %'



Implementation of the T-Matrix

To compute the intensity in the DBA, or to proceed further with the analysis of (4), we need an expression for

the coherent field. For a single scatterer, the scattered field from the j-th scatterer can be expressed as

Uj - Y f F (7)

where faj are the scattered field coefficients and 'T the outgoing functions (Hankel functions). The scattered field

coefficients f J and the exciting field coefficients 016 are related through the T matrix [Varadan and Varadan, 1980]:

f ZTn odaj . (8)

Substituting (8) into (7) and taking the conditional configurtion average, we have

>j - <Tnn)E j  > .j (9)

Further, to simplify the computation, we assume the shape, size, and physical properties of all the scatterers are

*- independent of their positions. In such a case, (9) can be written as

< u >j - X XToo; < an) >jynj. (10)

where the exciting field coefficients of the j-th scatterer can be shown to be (Varadan et al, 1985]

a a anJ + z E %n(rk - rj)Tn,n.k ank. (11)

In (11), a J are the incident field coefficients of the j-th scatterer and (nY is the translation matrix for spherical P

wave functions. Although anJ are, in general. unknown for a random distribution of scatterers, their conditional

average < anJ >j (average exciting field coefficients of the j-th scatterer whose position is fixed) are assumed to

have the following form [Varadan et al., 1985]

< anj >j- X cxp i Kko.r j )  (12-

C.-. which states that for an incident plane wave field, the average exciting field propagates with a new propagation

constant K along the incident wave direction ko . The new propagation constant K is complex and frequency

dependent and can be obtained by solving the dispersion equation (Varadan et al.,1986].

RESULTS AND DISCUSSION

In order to show the effect of nonspherical statistics on intensity, results based on the approximation for

randomly distributed spheroids using single scattering theory and the spherical statistics (Circumscribing Sphere I
Approximation and Equivalent Volume Approximation [Varadan el al., 1986] are compared with those using

nonspherical statistics. We have picked values of the effective wavenumber, which is obtained using the

nonspherical statistics in the investigation of multiple EM wave scattering by aligned prolate and oblate dielectric

spheroids [Varadan et al., 1987]. and used them to compute the intensity and show the results in Figs I and 2. One I
sees from both figures that, off-forward scattering at the fixed frequency as well as forward scattering at different

frequencies, without using the correct pair statistics for nonspherical scatterers, the computed intenties are quite

different from case to case. This fact explains why it is necessary to introduce the nonspherical statistics into the

intensity calculation.

To check the validity of our formalism, we compared our incoherent intensity calculations with the microwave

experiments conducted by Beard et al. [19651. The transmitted intensity was calculated using the DBA as given in

(6) where 0 - 00 represents the forward direction. This calculation is based on the experimental set-up which

"-" %
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consists of a slab region styrofoam container, for various concentrations of scatterer at the fixed frequency. For the

case ka - 20.8 for tenuous scatterers with relative index of refraction 1.016 the computed results match very well

with the measurements for off-forward scattering as depicted in Fig. 3.
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(6) where D- 00 represents the forward direction. This calculation is based on the experimental set-up which

U consists of a slab region styrofoam container, for various concentrations of scatterers at the fixed frequency. For the

case ka . 20.8 for tenuous scatterers with relative index of refraction 1.016 the computed results match very well

, ,with the measurements for off-forward scattering as depicted in Fig. 3.
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Earlier results for electromagnetic wave propagation in discrete random media assumed
spherical statistics for describing the spatial distribution of even nonspherical scatterers. The
appropriate pair correlation function for nonspherical scatterers can, in general, be obtained by.
the Monte Carlo method which Is essential in analyzing nonspherical statistics. This paper
presents new results using nonspherical statistics in the Investigation of multiple
electromagnetic wave scattering by aligned'dielectric prolate as well as oblate spheroids
randomly distributed in space. Comparison between previous results using spherical statistics
and present calculations show that approximating the spatial distribution of noaspherical
scatterers using spherical statistics will yield effective medium characteristics that differ quite
widely. Of all approximations using spherical statistics for non-spherical scatteers that using
an equal volume sphere appears to be the best if the actual statistics am not available:,

1. INTRODUCTION spheroid . The scattering responve of a single spheroid can be
simply represented by the T-matrlx (Varadan and Varadan.

In many radar applications, multiple scattering effects cannot 1980. If the concentration of the spheroidal scatterers (in this
be ignored [Ishimaru, 1978; Oguchi, 1981; Olsen, 1982]. In case. lossless dielectric prolate(oblate) spheroids ) happens to be
most theoretical investigation, scatterers are assumed to be small, random lattice gas statistics can apply, otherwise the
ipherical in shape and bear a uniform size distribution, spatial distribution of these nonspherlcal scatterers cannot be
,lthough this may not be practical (Bringi et al., 1983; Mathur described by spherical statistics. The reason, which is quite
and Yeh, 1964; Twersky, 1978; Varadan et al., 1979, 19831. obvious, Is that the pair correlation function, instead of being
When thd volume fraction occupied by the sphrcs huconnws a function of only the separation distance between a pair of
large enough to consider their relative positions, detailed scatterers, becomes also a function of the orientation of the
Imowledge of the positional distribution of the scatterers is vector joining the two-nospherical scattem. To just see the

P. needed. This entails a consideration of inter-body forces as in shape effect and distinguish this from the previous
the many body problem of statistical mechanics. At a approximations using spherical statistics, we consider only the
minimum, the pair correlation function is required In analyzing aligned case. Further the direction of wave propagation is
he problem. In nature, unfortunately, scatterers are not simple restricted to be along the rotational axis of symmetry of the
in shape and some results have been reported for nonspherical aligned spheroids. We emphasize that arbitrary orientation
particles tTsang. 1984; Lang et al., 1986; Varadan et al., (including random orientation) of nonspherical scaterers will
1985]. However, to appropriately niodel the real situation, not cause major difficulties in the theoretical analysis but we
deviation from a spherical scatterer still keeping the rotational leave this to a future analysis.
symmetry of the scatterer appears to be an Improvement to the The nonspherlcal statistics involved in the analysis is the pair

9. previous model that permit us to study the shape effect. A correlation function for aligned spheroids. It is well known that
simple nonspherlcal scatterer happens to be a prolate or oblate the Monte Carlo simulation method has yielded superior

numerical results for the radial distribution function of densely
Copyright 1987 by the American Geophysical Union. distributed hard spheres [Barker and Henderson. 1971]. with thehelp of advanced digital computer. Therefore, in this paper, we

Paper number 7S020.S. will briefly discuss the application of the Monte Carlo method
0048-66041871007S-0205$08.00 in obtaining the pair correlation function for aligned spheroids.
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z -- 0 butn o - N/V the number density of scatterers is finite,
see Figure 1. Let u, u°. ue. us. be respectively the total field;
the incident or primary plane, harmonic wave of frequency w;
the field incident or exciting the ith scatterer, and the field
which is in turn scattered by the ith scatterer. The time

all dependence exp(-iot) of all fields is the same and not written
0. explicity.

These fields am defined at a point r which is not occupied by
P one of the scaterers. In general, these fields or potentials

which can be used to describe them satisfy the scalar or
vector wave equation. Let Re nm Ou fndenote the basis

i-b/a>; of orthogonal functions which am elgenfunctions of the vector
b prolate Helmholtz equatin. The qualifier Re md Ou denote functions

a which a reg at the origin and outgoing at infinity which
Ok v.b/acl are, respectively, appropriate for expanding the field which is

oblate incident on a scatterer nd that which It scatters which in turn
must satisfy outgoing or radiation conditions. Thus, we can

0 Y write the following set of self-consistent equations:

ig + l-i.- u+ 'i - ui 1+U'i

1Fig. Multiple scattering of waves in discrete random media * uO + ;- Q uSj + uSi (1)
with positionally and orientationally correlated nonspherical

t "1 u°(r) - 0exp(lkko.r) " n An Re #n(r-ri) (2)

likue " . Re 0n(r -ri); a <lIr -ril< 2a (3)
Finally, computations of the effective attenuation rate using i
nonspherical statistics in .studying electromagnetic wave u! - Zf I Ou n(r - ri); I r - ril a a (4)propgation through randomly distributed aligned spheroids are L

performed. Comparison between previous results using where US and f.I am unknown expansion coefficients. We
spherical statistics and present calculations show that observe in (3> ad (4) that a is the radius of the sphere or
approxiniating the spatial distibution of noaspherical scatterers cylinder (for two-dimensional problems) circumscribing the
using spherical statistics will yield effective medium scatterer and that all expansions are with respect to a coordinate
characteristics that differ quite widely. Of all approximations oigin located in a particular scathm.
using spherical statistics for non-spherical scatterers that using Th T-matrh by definition simply relates the expansion
an equal volume sphere appears to be the best if the actual coefficients of uel and usi provided uel + usis the total field
statistics are not available, which is consistent with the definitions in (1). Thus, see

0Varadan and Varadan (19M,
2. MULTIPLE SCATTERING FORMULATION

fni  - un Tn, an~ (5)
In this section, the average field in the random medium is

written as a partial summation of a multiple scattering series, and the following addition theorem for the basis functions is
By issuming that the average field is a plane wave with an invoked
effective wave number K, the resulting dispersion equation is
solved. The formalism is general and applicable to any types Ou 4n(r-rj) En, 0nn,(ri-rj)Re*n,(r-ri) (6)
of wave. Only the most important details that lead to the
dispersion equation involving the paircorrelation arepresented Substituting Eqs. (2) - (6) in Eq. (1). and using the
and for all intermediate steps, we refer the reader to [Varadan et orthogonality of the basis functions we obtain
al., 1979]. Vector notation is dispensed with, but the

6' .0 formalism is equally applicable to acoustic fields satisfying the Qi " I Y j~i a(ri7rj) o7
scalar Helmholtz equation, or the electromagnetic field
satisfying the vector Helmholtz equation. This is a set of coupled algebraic equations for the exciting field

Let the medium contain N aligned, randomly distributed coefficients which can be iterated and leads to a multiple
spheroidal scatterers in a volume V such that N -+, V scattering series.

.,
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For randomly distributed scatterers, an ensemble average can 0; ri - ri < 2a

be performed on Eq. 7) leading to P(rj I ri)  S( I ri - rj I ) / V I ri - rj I > 2 (
_ , <a~>i .-ai+ <a (ri-rj)TJ<aJ>ij >i (8)

where we have assumed that the scaumm are impenetrable with
where angle brackets and ijk. denotes a conditonal average and a mininmm separation between the centers, and in (15), 2a
(8) when iterated is an infinite hierarchy involving higher and could be the diameter of the circumscribing sphere in
higher conditional expectations of the exciting field three-dizenslonal and circle In twodimensional, or 2a could be
coefficients. In actual engineering applications, a knowledge of the dianeter of a sphere of equal volume. Equation (15) is the
higher order correlation functions is difficult to obtain, and one that has been used in pteviou calcatiions for nonspherical
usually the hierarchy is truncated so that at most only the two scatterers and hence this equation leads to the use of spherical
body positional corlation function is required. statistics for nonspherical scauterers. We observe that in (15),

To achieve this simplification the quasi-crystalline the joint probability distribution depends only on the
approximation (QCA). first introduced by Lax (1952] is interparticle distance and not on the orientation of the vector
invoked, which is stated as joining the centers and the function g( I r j I) is called the

radial distribution function.
< >i < 3.j (9) If the concentration of nonspherical particles is not small,

then it is incorrect or at best approximate to assume that
Then, (8) simplifies to isotropic statistics ae valid. In this case we assume that the

radial distribution function depends not just on the magnitude
<%ai> -ai + <o(ri-rj)TJ<c>j> i  (10) of the vector joining the centers of two spheroids but also on

the orientation of this vector. For aligned spheroids which are

rotationally symmetric, the dependence is only on the angle 8
- ibetween the separation vector and the symmetry axis which isan integral equation for <a'> i which in rinciple can be taken to be the z axis of the coordinate system, as shown in

solved. We observe that the ensemble averge in (10) only Figure 1. There is no dependence on the azimuthal angle 0.
.requires P(rir) the joint probability distribution function. In The joint probability distribution function is then written as

particular, Qh homogeneous solution of (10) leads to a
dispersion equation for the effective medium in the 0; [ri-rjl< R(8)
quasl-crystalline arrnoximation. Defining the spatial Fourier t I -
transform of <ca 'i as P(rjfi ri) = (16)

<cti > - ei'*ri Xi (K)dK (11) In the above equation, G (r, O) is the pair correlation function
for aligned spheroidal scatterers (details in the next section),

and substituting in (10), we obtain for the homogeneous and R(O) is the minimum center to center distance when the
solution spheroids just touch one another at one point, such that the line

joining their centers subtends an angle B with the symmetry or
Xi (K)- *if a(ri-r j) TJ p(rjlr i)  z-axis of the spheroids. In this case the statistics are not

isotropi but are function of direction.

x eK" (ri - rj) drj XJ (K) (12) If (16) is substituted in (14), we get the following integral
involving the pair distribution function when the explicit form
of the translation matrix is substituted and exp ( i K- (r -r1 ))

If the scaun are identical is written as an expansion in regular wave functions [Bng et

"X K al., 1981]
Xi(K) - XJ(K) - X(K) (13)

and thus for a nontrivial solution to <cz'ii, we require [JH)] - 27cn o ( 2, + I ) Jo sin 0 dO x (1)

. cI (ri -rj)Tp(rjlri)eiK (ri-r p drj I'0 (14) ( (r. ) J(Kr) h.(kr) PX(cose) p.(cosq)r2dr
j*, i

where P.(coS 0) is the Legendre polynomials andj. and h), are
In (12) and (14), P(rjlri) is the joint probability distribution the spherical Bessel and Hankel functions, respectively. We
function. For isotropic or spherical statistics, note that the lower limit of the integration on the r- variable

% %
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(a) Circumseribtng Sphere
Assipton SMpt/.a

Fit. 2 Die equal volume sphere and the cirumscribing sphere assumption.

depends on the angle 0. This double integral must hence be Equation (18) is actyally a special case of (17) and c is the
per'ormed numericaly. If isotropic statistics are used on the concentration (c-ta. 05) or vohme fracton occupied by the
other had, i.e.. (15) is substituted in (14) and as in (17) the scatterers and a is t radius of sphere of volunw equal to the
explicit form of the translation theorem is used, then (17) scatterer.. The prime denotes derivatives with respect to the
sit drifies to argument of the Bessel and Hankel functions. The first term in

(18) is usually referred to as the "hole correction' term. This[JHX] - 6c (2ka j) (2Ka) h';,(2ka) - (18) only takes into effect that the scwalre-s cannot penetrate one
another and does not take into sccont positional correlations.

2Ka j.(2Ka) h(2ka) ]I ((ka) 2 -(Ka) 2 } We further notice that the integral in (18) is only in one
variable unlike (17) which contains a nested double integral.

24c [ S(x) -11 jx (2Kax) h).(2kau) x2 dx The *hole correction' appears in analytical form in (18), since

, 8,d
2.1 90, 2a

G(R,e)

~-

b

1 2 a1 4U

R/d
Fig. 3 Pair distribution f'nction for random prolate spheroids using Monte Carlo simulation.
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62:, during the Monte Carlo simulation by using the orthogonality
" /o... . ..- -of the Legendre polynomials and (18) can be inverted to give
b/d L5. [Streett and Tddesley, 1976]

i - -- ,4' - g1(r) - (21 + l)<PL(cos )>Shel I nOV(r. r) (20)

S_/ -- where < > Is the average for all particles in the spherical shell
. /iswith radius r 0 r + Ar of volume V(n. At).

t / /// The Monte Carlo method in staistical mechanics refers to a
"-/ 'comptational scem for estimating averages of the following
v / ///form

I/,C Q.05I,'? - -$DOLE SCA% 4>p - lnTf(X)P(XdX/ J MP((2iX
iiSPHERE

•J. - EQUAL.VOL where X - (r1 . r2, - rl.. rn) with ri the-position vector of

CIACUMS. smat the h partcle and f(X) is any well-behaved function of X and
1" . MONTE , CARLO P(X) is a probability density funcion of X and for hard bodies

f/i has the form

P(X) - expf-PUM)}. -II/T (22)
-F I I I I I I I I

106 Q2 0.4 0.6 os 1o where U(X) is the potential energy of the system andt c is the

kb Boltzmann consantL
t 4Furthermore, the Monte Carlo method in its basic form

Fig. 4 Attenuation vs. nondimensional wave number using consists of defining and realizing a Markov process in X space,diff~zen statistics, and comparison with single scattering which is the configuration space in this case. Chain averages

approximation for prolate spheroids of aspect ratio b/a - 1.5

vd concenlration of 5%.

dte excluded volume is a sphere of radius 2a, where a is the
radius of the equal volume sphere. In (17), it is difficult to b/a * 2a seParat the "hole correction" term since that must also be done
wanerically.

Equation (14) is a determinantal equation, the roots of which
can be solved for numerically to yield the values of the effective
wave number K - K1 + iK2 as a function of the frequency via

k = a) / c, the shape, size and orientation of the scatterer via the
T-maurix. and the statistics of the distribution via the joint E
probability distribution function. The effective wave number

which describes wave propagation characteristics in the 10
cmposite medium./

The details of numerically simulating the pair correlation . C-- 0.05

fu'ction for spheroids is outlined in the next section. UU SCAT

-- EQUAL VOL.

3. THE PAIR CORRELATION FUNCTION 1 1 MONTE CARLO

FOR ALIGNED SPHEROIDS

The pair correlation function for aligned spheroidal particles
can be expanded in Legendre polynomials as

-6
G(r,O) - 1 1 g(r)P 1 (cosO) (19) 10 02 04 kb

where the coefficients g(r) depend only on the distance between Fig. 5 Same as Figure 4 but for prolate spheroids of aspect
particles (see Figure 1). The coefficients g(r) can be evaluated ratio b/a- 2.

i%
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.. ...... approximation that the relative position of a pair of spheroids

Sb/a 1.5 may be replaced by that for a pair of spheres which
/ .circumscribe the spheroids (we call this the circumscribing

../sphere assumption). These two assumptions are explained
graphically in Figure 2. Some representative plots of the paw
correlation function G(R,) is plotted as a function of the

3 / interspheroid distance for various angles for prolate spheroids
10 // / .of aspect ratio 1.5 at a concentration of 15% in Figure 3. In

/ . X Figure 4, the equivalent volume spherical statistics and the
ImKA)/ circumscribing sphere statistics are compared with the

/ spheroidal statistics for an aspect ratio of 1.5 at a concentration
4" / of 5%. We note ta the circumscribing sphere statistics are

10 limited to very low volume fractions at high or low aspect
ratio$ because the circmscribing spheres begin to overlap even

""/at low spheroid concentrations.
/ c 05 In Figure 4, the attenuation which is normalized with respect

SINGLE SCAT. to k, i.e. (K2 I k) is plotted against the nondimensional1/
- m-e scA , Lfrequency kb for prolate spheroids with an aspect ratio 1.5 and
- ONTE CARLO 5% concentration. If we do not consider the pair correlation at

"-/ -- 11ccuMs. SPHERE all, i.e.. the calculation done using single scattering theory, one
. sees that the results give much higher attenuation than all other

- cases and this has been observed for all the computations.
Although the circumscribing sphere assumption predicts lower

.6 6 08 t10 attenuation, for such a moderate concentration, the equivalent
kb volume assumption produces relatively good results when

Fig. 6 Same as Figure 4 but for a concentration of 15%. compared with the attenuation using the Moote Carlo method.
This is also true for prolate spheroids of aspect ratio 2 which

are evaluated based on whether the required probability appeared
in different configurations. Readers are encouraged to go * .
through the work of either Metropolis et al [1953] or Wood b/d 2
C 1968] for details. For a system of hard particles, the requiredprobability in accepting the configirrations consists of simply -.

checking the overlap criterion. Overlap is decided by checking -
whether the center to center distance for a pair of spheroids is --/.
less than d which i; defined by

d - 2b[I-cos2 8 co /112 ]-1/2 /,q (23)

where TI is the aspect ratio of the spheroid such that Ti >1 for
prolate and T1 <1 for oblate spheroids and b is half the length td
of the axis of symmetry for the spheroid (see Figure 1). 1 C 0o5

4.S SO $SINGLE SCAT.
EQUAL 

VL

" 4. RESULTS AMD DISCUSSION 
I -'uAt IL ..

ff MONTE CARLO

The imaginary part K,2 of the effective wave number K, .6 .. SPERE
which is related to the attenuation in the effective medium, can
be obtained by solving the dispersion equation in (17). In order
to judge the effects of the pair correlation function, results
based on calculations for spheroids using spherical statistics
are also presented, i.e., using (18). In one calculation it is 66
assumed that the relative position of a pair of spheroids can be Q 0.2 0.4 0.6 oa .0
approximated by that for a pair of spheres, each of which has kb
dle samea volunte as the spheroid (we call this the eqiivaluni ig. 7 Same as Figure 4 bul rcw b/a - 2 and concentration of

volume assumption). The other calculation employs the 15%.

%,..

% 
%bv
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.2 --- 7  ----- r ' --- ~ can be seen In Figure S. However, when the concentlllion is
inrese .to 15%, even the equivalent volumne assumption fai Is

b/o -0.5 o" to correctly predlict the attenuation and , in general. it
/ ,' 7overpredicts the attenuation. These can be observed in Figures 6I / ,and 7.

/7For oblate spheroids, the attenuation is similar to that forthe
/ prolate spheroids when the concentration is low. Two sets o

/ / calculation for aspect ratios 0.5 and 0.67 are presented as in
/ Figures' 8 and 9 for 15% concentration. At such a high

10 '~ :oj:concentration, for both aspect ratios, we find that the
p / well in delwfrequency range while the equivalent volume

SsIGL SCATVO assumption yields better results when the frequency is
EOU. VOLincreased. However, both approximations cannot be compared

-- AUM $10Hcu. with the MonteCaftomethod in acertain band width when the
- MONTECARLO concentration Is high.

~~ In conclusion. we would like to emphasize the importance of
using nouspherical statistics in analyzing the scattering from,
densely distributed noospherical scatterrs. The approximations
made for the spatial distribution of nonspherical scatterers can
produce results which either over or under-estimate the effecu ve

--L-j properties which in thiscase, is the annuation of the effective0,4 LS O IDmedium. The effective phase velocity which is a relatively
Ko slowly varying function of frequency and concentration is

Fig. 8 Same as Figure 4 but for oblate spheroids with b/a -insensitive to the differences between nonspherical statistics arnd
0.5 and concentration of 15%. the equal volume spherical statistics. Hence the phase velocity

plots have not been included here
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Scattered Intensity of a Wave Propagating in a Discrete Random Medium
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"- The present paper aims at a computational scheme to obtain numerical results for the second moment (average
intensity) of a wave field propagating in a medium consisting of randomly distributed scatterers, not necessarily
simple in shape. A formalism is presented that parallells the diagram method and shows the approximations made in
the intensity computation of anisotropic scattering whenever finite size scatterers with a considerable concentration
are considered. The back and forth scattering between a pair of scatterers, which has been neglected in the ladder
approximation, automatically appears in our formalism taking into account all the multiple scattering between two
particles through the pair statistics. Sample numerical results for average intensity scattered by particles are presented
and compared with some microwave and optical measurements.

I. Introduction

Scattering of waves from random distribution of objects has received attention ever since

Rayleigh's pioneering work in explaining the color of the sky. 1 The statistical moments of a wave

S propagating in a random medium-are of great interest for use in communication, probing and

remote sensing. Numerous papers have reported a study of moment equations of various kinds

(acoustic, electromagnetic and elastic) for waves in both continuous and discrete random media. As

f] a result, it has been shown that the first moment called the coherent field satisfies a Dyson-type
equation, 2 whereas the second moment or intensity satisfies a Bethe-Salpeter type equation.3 ,4

In spite of the abundant literature on wave propagation in continuous random media, an

uneven progress still exists in scattering from dense distributions of scatterers which has an

increasing application in lidar, radar, and sonar remote sensing. The present paper aims at a

computational scheme to obtain numerical results for the second moment (average intensity) of a

wave field propagating in a medium consisting of randomly distributed scatterers, not necessarily

simple in shape. In a previous paper 5 this has been shown with the help of Feynman diagrams. 6

however, formal derivations and a detailed expression of the average intensity in terms of the

T-matrix, dressed propagators and pair correlation function were not given. The formalism

Id, IF-,".'- -
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presented here parallells the diagram method and shows the approximations made in the intensity

computation of anisotropic scattering whenever finite size scatterers with a considerable

concentration are considered.

Unlike diffusion theory, 7 which treats mainly isotropic scattering for point scatterers and
JP

large scatterers embedded in a medium with a large optical distance, our concern is the range

between those extremes where the validity of the diffusion approximation is fairly limited. In

addition, the recently observed enhanced backscattering phenomenon 8 appears to be a result of

multiple scattering which cannot be explained by radiative-transfer theory in which the average

intensity is treated in a way analogous to the ladder approximation of the Bethe-Salpeter equation.

In the formal derivation of the second moment equation based on Twersky's previous work,9 we

clearly show different orders of scattering which involve different orders of statistics and the

approximation made in order to implement the computation using the ladder. diagram. The cyclic

diagrams which involve back and forth scattering between a pair of scatterers was introduced in an

ad hoc manner to explain the enhanced backscattering, 10 ahd is neglected in the ladder

approximation. In the derivation presented here, it appears automatically and takes ir'to account all

multiple scattering between two particles through the pair statistics. This is essential for high

concentrations of scatterers, since in this case their positions are not totally random but there is

partial order. The observation that back and forth scattering may have a major contribution to

backscattering rather than the forward direction has also been made in one of our previous

papers11

In our formalism, shape factor, size distribution, orientation distribution and physical

properties of scatterers can all be considered, however, till now, the most reliable calculations are

performed for scatterers with rotational symmetry. 12,13 The reason is partly that the intensity
. equation which best predicts the scattering characteristics beyond some threshold concentrations

(when deviations from the single scattering approximation become prominent) requires information

about the pair correlation function which is available at the present time only for simple shaped

2
0 - .1., -° -' -" , , ". ., ." -" . ." , " ., " ." .".. ." ," .2 . '. -' -" ., ." -. " " ." , - . - -' ' . " -" , " . -" , " .,, : " , '
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scatterers which are aligned. Sample numerical results for the average intensity scattered by such

particles are presented and compared with available microwave and optical measurements.

, H. Multiple Scattering Formulation for the Intensity

For the scattering of waves by N, not necessarily identical, scatterers located at r 1, r2 ,•

o rN, we represent the total field outside the scatterer by

U(r) = uo(r) +I uj (r - rj). (1)

where uo is the incident wave field and u* the field scattered from the j-th scatterer. If the scatterers
U¢ ,.

are randomly distributed in space, the total field can be divided into two parts and expressed as

U(r) = <U(r)>+v. (la)

We call < U(r) > or < U > the average or coherent field and v the fluctuation or incoherent field.a'

The angular brackets < > represent the configuration or ensemble average whose definition is well

known..

Similarly, we average the "intensity" (or the second moment of the.field) IU12 over the

ensemble, and write the "average total intensity" as

< IUl2 >=I<U> 2 +<Iv 12>

,1< U > 12 + V (2)

where I < U > 12 is the coherent intensity and can be determined if the average field < U > is

known. However, the incoherent intensity V which is the ensemble average of the absolute square

of the field fluctuation is not a directly obtainable quantity. By the use of Eq. (1) and some

operation rules for the configuration average, the incoherent intensity V in Eq. (2) can be written as

' < Vu j1u2 > +EE<kuj*>-.<U><u .*> (3)

k *

where the superscript "" represents the complex conjugate of the attached quantity. Eq. (3) is a

* -. 3
N .
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finite sum, though "N", the number of scatterers, can be fairly large. The computation of V

becomes impractical even for a moderate N and in most cases impossible. In terms of an

appropriate probability distribution function and the conditional configuration average, Eq. (3) canI..

be expressed in the following integral form

V = nof < ujl2 >j dr j

+ no 2 f < ukuj* >jk g(rjk) drk drj

o _ 2 JJ < uk >k < uj* >j drk drj (4)

where no is the number density ( no= NIV ), < >j and < >jk are conditional configuration

averages holding the positions of the j-th and both the j-th and k-th scatterers fixed, and g(rj;) is

the pair correlation function which is called the radial distribution function for the case of spherical
Eu

scatterers. Equation (4) is an exact expression for the incoherent intensity V. Even if the the number

density and pair statistics are known, unless the conditional averages appearing in the integrand are

known the integral cannot be evaluated. We also note that this expression can be used to calculate

i the intensity of the field scattered by a randqm rough surface provided the integration variables ri,

rj, rk etc are confined to the rough surfacd. 14

For regulardistributions, i.e., scatterer at fixed positions, there is no incoherent scattering (V

= 0) due to the fact that the averaging process is not required. If the scatterer locations are random

and independent of one another, only the first term on the RHS of Eq. (4) remains. This is the

single scattering approximation to the intensity. Otherwise, in addition to incoherent single

scattering, a relatively coherent intensity appears as the contribution of the second term grows. As

.. the concentration of scatterers increases a local order is introduced in the near field of the scatterers

since the particles can only be packed in a limited number of ways. In order to proceed further with

the computation of the incoherent intensity as stated in Eq. (4), we need expressions for <uj> i

<uj,2>; and <ukuj*>. The Distorted Born Approximation which is discussed next avoids further

analysis by making straight forward approximations to the first two terms of Eq. (4).

% 4
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III. Distorted Born Approximation ( DBA )

In order to calculate the incoherent intensity V from Eq. (4) an approximation needs to be

made for < ujl2 >j as well as for < UkUj* >jk, which are both unknown. If we consider only first

-R order scattering, we can use the distorted Born approximation as follows:

< UkUj >jk = < Uk >k< Uj >j. (5)

This approximation was used by Twersky 15 in solving the rough surface scattering problems and

has subsequently been used by several other authors. Using Eq. (5), in the distorted Born

approximation, Eq. (4) can thus be written as

V = nof<uj>j<u j* >jdrj

I- + no2 J < uk >k < uj* >j [g(rjk) ]drk drj. (6)

Equation (6) represents the incoherent intensity in the DBA. Its source is the coherent field,

<uj>j. Later we show that the average scattered field <.uj >i is related to the average exciting field

when we neglect the field fluctuations in the field exciting a scatterer. Equation (6) tells us that the

second term has a contribution to the intensity whenever the i-th and j-th scatterers are close to each

other (position dependence), otherwise the contribution can be neglected (for small concentration,

g(rjk) - 1). Equation (6) is a deterministic equation since only the average exciting field is involved

and the calculation is straight forward for spherical scatterers, by using tabulated values of the pair

correlation function. However, attention should be paid to the implementation of the equation since

the integrals in Eq. (6) depend upon the receiver position through <uj>j. For line-uf-sight

propagation, the receiver can be placed either in the scattering medium or outside the medium and

the axis of the receiver may not be parallel to the propagation direction (see Fig. 1). Furthermore, in

order to compare with real measurements, the calculated incoherent intensity, must take into

account the characteristiis of the transmitter and the receiver and the spreading factor. In other

words, the beam patterns of the transmitter and the receiver, especially for off-forward scattering,

must be built into the equation which makes the calculation a little more complicated. 16

In general, using the distorted Born approximation,the incoherent intensity in the far field is
A2.

SD
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S •directly proportional to:

V o { Io A 12 no /(kr) 21 [1+ nJ [g(x) - 1 ]exp(i q.x )dx] (6a)

where Io is the incident wave intensity, JAI the modified bistatic scattering amplitude (by this we

refer to the scattered amplitude when the excitation is the coherent field), g(x) is the pair correlation

function, x = rj - rk, and q = Kk0 - kr; where K is the effective wavenumber, k0 the unit vector

along the incident wave direction, k the wavenumber of the host medium, r the unit vector in the

direction of observation.

In the integral of Eq. (6a), we find that if the concentration of scatterers is small, the pair

F.: correlation function g(x) is independent of x and equals unity, therefore the second term on the

RHS of Eq. (6a) simply vanishes and only single scattering terms remain. If g(x) * 1, the

incoherent intensity is comprised of single scattering contributions from'each scatterer plus multiple

scattering effects. Only if no 0 0, i.e. no scatterers are present in the medium, the incoherent

intensity V is zero and the total intensity is just the incident wave intensity if the medium itself is

lossless.

The other extreme is when the whole medium is occupied by scatterers, the incoherent

intensity again vanishes. This implies that one composite medium (two phase medium) has been

converted to a single phase homogeneous medium, therefore no scattering occurs. This can be most

easily explained by considering the low frequency limit, i.e q.x << 1 . In this case,

exp(iq-x ) ocI and 1 + no f [g(x) - l]dx = (1 - c) 4 / (I + 2c)2

which is the statistical-mechanics packing factor for spherical scatterers distributed in three

dimensional space. The volume fraction c (= no47ra 3/3 for spherical scatterers with radii a) is unity

and the structure factor vanishes so does the incoherent intensity. When the volume fraction is

between 0 and 1, the incoherent intensity is proportional to c(1 - c)4 /(1 + 2c)2 , in the long

wavelength limit.

A. The Coherent or Average Scattered Field < u > t

To compute the intensity in the DBA, or to proceed further with the analysis of Eq. (4), we

6 -%.*
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need an expression for the coherent field. For a single scatterer, the scattered field from the j-th

scatterer can be expressed as

,,, ~uj Q T. nj n(7

where fnj are the scattered field coefficients and 'nJ the outgoing functions (Hankel functions).

The scattered field coefficients fnJ and the exciting field coefficients anJ are related through the T

matrix :17

fn Tnn j %J. (8)

Substituting Eq. (8) into Eq. (7) and taking the conditional configuration average, we have

< u >j = < Tnnj OJ TriJ >j. (9)

Further, to simplify the computation, we assume the shape, size, and physical properties of all the

scatterers are independent of their-positions. In such a case, Eq. (9) can be written as

< u>j = TnnJ < nJ >jnJ. (10)

S.where the exciting field coefficients of the j-th scatterer can be shown to be5

cJ = anj + Z ( ann,(rk - rj)Tn'n,,k n, k .  (11)

In Eq.(11), anJ are the incident field coefficients of the j-th scatterer and ann' is the

translation matrix for spherical wave functions. Although OtnJ are, in general, unknown for a

random distribution of scatterers, their conditional average < anJ >j (average exciting field

coefficients of the j-th scatterer whose position is fixed) are assumed to have the following form5

%< J >j=Xnexp (i Kkoj) (12)

which states that for an incident plane wave field, the average exciting field propagates with a new

propagation constant K along the incident wave direction ko. The above form results directly as a

result of the assumption that the average medium is a statistically homogenous medium described

by different properties but that preserves the plane wave nature of the original incident plane wave.

The new propagation constant K is complex and frequency dependent and can be obtained by

solving the following dispersion equation5

< + 2 ~ alf.(kk 13< nJ >j anJ + no f -nn,(rk rj)Tn'n"' g(rjk) < aXn"k >k drk (13)

.
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in which the Quasi-crystalline approximation (QCA), 18 i.e.,

< ank >jk- < n >k, (14)

has been introduced.

IV. Improvements to the Distorted Born Approximation

We can now proceed with further evaluation of the first and second terms of Eq. (4) which

involve <ujuj >j and < UkUj >jk. These are, respectively, the ensemble average of the intensity

of the field scattered by one scatterer in the presence of other scatterers and the correlation of the

fields scattered by two distinct scatterers. These can also be expressed in terms of the T-matrix,

exciting field coefficients and outgoing functions, as follows:

. * •. **i ~ , ,r'< ujuj >j = " TnnJ Tn,n,,J < Otn,,J an.j* >j TnJ Tnd , (15)

< ukuj* >jk Tnn,,k TnnJ * < ann,,k an,,j* >jk Tnk Tnj*.  (16)

If we do not use the distorted Born approximation and instead Eq. (11) is substituted into.

Eqs. (15) and (16) for an and for simplicity all the obvious subscripts are omitted to obtain
Al

aJ* >=<( aJ +-'GjkTkcak)( a) + Y'a-* Tma m  >
k l~ m.i ~

. /~jI  /17*)

= a + a [<&aJ* > - aJ*] + [< x> - aJ]

+ Y Y ajk Tk jm *Tm * < k am *> . (17)

Therefore,

< cj*>j = aJ<cJ >+aj < j.- aJa

+ Y-'c jk Tk j k*Tk* <ck ak* >jkp(rj;rk)drk
Z~i k:n,

+' ' *f.0 'a * k m*

Sjm* <c a >jkm •p( r rk,rm drk drm (18)

wriWe are now ready to proceed with a similar evaluation of < ukuj* >jk' Using Eq. (11), we

can write

L8
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<akaj*>k=<( ak+Z'apTPcp)(XP aJ+,'(ajmTmam)* >jk

.ak a* + ak [< j* >jk - aj*] + [j* a]L." ": = >k -

-kp t Tjm*Tm < P a m  >jk (19)

where the last term can be further expressed as the sum of the following

I YGlkp TPajm*Tm* < aP am *>jk = Gkj ajk*Tj Tk* < ai ak* >jk

+ I kp ajp*TP TP* < cPcP* >jkp p(rk,rj ;rp)drp

+ 7- fakj Yjp*TJ TP* < aJaP* >jkp p(rk,rj ;rp) drp

+ 7 Gkp jk TP Tk* < pctk* >jkp P(rk,rj rp)drp

+ Z f f ckp ajm*TP Tm * < aPam* >jkpm P(rk,rj ; rp,rm) drpdrm. (20)

Equations (18) and (20) can be substituted into Eqs. (15) and (16) and finally into Eq. (4) to yield

an expression for the incoherent intensity which can be evaluated in principle provided complete

statistics are known. It can be seen that Eqs. (18) and (20) involve correlation functions'of all

. orders. In practice, this is not known for any system unless approximations are made for the

correlation functions or the statistics are Gaussian. In this case, higher order correlation functions

can be written in terms of products of lower order ones or the higher order statistics can be

completely neglected. This is pursued in the next section.

V. Corrections to the DBA Keeping only Two Point Statistics

A. Ladder Approximation

I. In order to carry out the intensity computation, we need to make approximations based on

the statistics we considered for the coherent field. Up to this point, statistics higher than the pair

correlation function has not been employed in the truncation of the hierarchy of equations for the

coherent field. 5 Therefore, we neglect terms involving p( rj ; rk,rm ) which is the conditional

probability of finding the scatterer at rj with respect to a pair of scatterers at rk and rm. Further, in

the spirit of the QCA we assume that

< ak ak*>jk <a k Uk*>k (21)

* 9
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S Equation (18) can then be written as

< 0J" >j < (J >; < >j+n ak k Tk  k  ak (k*(2

+ no f aY k ajkTk < ak >jk g( rjk) drk- (22)

If we keep iterating < ak (k*>k and use Eq. (21) as an approximation in Eq. (22), we obtain

n< ( aJ*>j - < (x >j < >j + no f jk Tk T * jk*Tk* < ctk >k < k*>k g( rjk ) drk

0-- n j k yjk*Tk* akm Tm km *T m * < am >m < xm*>m g( rjk )g( rkm ) drkdrm

+ no3 Iff ajk Tk ojk*Tk* akm Tm rkn*Tm* x

x mp mpTP < i > <cP p g( rjk ) g( rkm) g( rmp ) drkdrmdrp

+ ... Distorted Born + Higher Order Correction. (23)

Equation (23) when substituted into Eq. (15) and then in Eq. (4) will enable us to compute the first

term of the incoherent intensity V to accuracy higher than the DBA, but involves only the pair

correlation function. This is explained further when the results in Table I are discussed. In Eq.

(21), an approximation analogous to the QCA for the exciting field has been made for the exciting

field intensity.

The above equation is analogous to the equation associated with a continuous random

medium with fluctuations of the physical properties whose distributions are Gaussian. In this case,

U all correlation functions appearing in the averaging process can be written in terms of the two point

correlation function. 4 If we use diagrammatic techniques, which were first introduced by Feynman

in quantum mechanics, 6 and were later, employed in the study of wave propagation in random

media by Bourret, 19 Furutsu, 20 Tatarski 21 and Frisch, 4 it can be shown that Eq. (23) is

- equivalent to the ladder approximation (neglect the cross terms, i.e. 1-2' and 2-1', in Eq. (24a)) of

the Bethe-Salpeter equation:

ia <-U(r, ro)U*(r, r')> =<U(r, ro)><U*(a., r0 )> + JJJJ drldr 2drl'dr 2 'G(r, rI ) x

e G G* (r', ri')I(r1 , r2; rl', r2') <U(r2, ro)U (r2, ro')> (24)

The above equation can also be represented diagrammatically as

p. 10
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r1 2 r

I(rI, r 2 ; rI', r 2 ') (24a)

il.r'' 2' ro

where (r, r') and (ro,ro') are the vectors associated with the incident and observation positions

respectively. The vectors rl, r2 , r ! ' and r2 ' denote position vectors of the scatterers 1, 2, 1' and

2' respectively and G( ) is the propagation function. In most cases it is difficult to calculate an

explicit expression for the intensity operator I(r 1, r2; r 1 ', r2). In order to evaluate the correlation

function of the field, it is necessary to resort to approximate representations. The ladder

approximation to the intensity operator based on Eq. (23) is

• 1 "j k m
-- <o( 4-o <- <o< -> -O- -o -- <(>

+ (25)

We note that only the-first term of Eq. (4) which involves only <Iujl 2 > contributes' to the ladder

approximation.

The so called "dressed" diagrams shown above have a multiple scattering interpretation and

in this approximation, the coherent exciting field is the original source of the final incoherent

radiation. The upper (or lower) line corresponds to a wave, scattered by the m-th scatterer which is

excited by the coherent field, propagating in an effective medium, characterized by the effective

wavenumber K, to the k-th scatterer which is again scattered and propagates to the next scatterer,

and so on. The curly and dash lines joining two scatterers represent the dressed propagators which

consist of the translation operator a and the pair correlation function. Each double diagram in Eq.

(25) is the product ( scalar or vector or tensor product depending upon the nature of the problem) of

the operator corresponding to the upper line with its complex conjugate corresponding to the lower

line. Therefore, different order ladder approximations of the incoherent intensity rely on the number

of sequential scattering.prncesses considered in the calculation. Without truncation of the series,

.1I1
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rthe calculation cannot be done. The truncation depends critically on the concentration of scatterers,

the propagation distance or the thickness of the scattering medium, physical properties of the

scatterers, the incident wavelength, etc.

B. Cyclic Diagrams

. It will be now shown that the so called cyclic diagrams involving back and forth scattering

.. between a pair of scatterers results from the second term of Eq. (4). In order to carry out the

computation, higher order statistics, i.e. p(rkrj ; rp) and p(rk,rj ; rprm), are neglected in

Eq. (19). Finally, we have, after some manipulations in iterating < aJ ak* >jk,

<a >jk <  >k <  >j+ kj Gjk*rJ T k* < a >j < ak* >k

+ akj *TjkTJ Tk* kj CyjkTk Tj* < a >j <a >k

= Distorted Born + Higher Order Correction. (26)

After substituting Eq. (26) into Eq. (16) and then in Eq. (4), we can diagrammatically write the

incoherent intensity V as:
-K > K >

JA K

' ". " + +'" (27)

In the above equation, one sees that beyond the distorted Born approximation the cross terms

imply that back and forth multiple scattering processes between a pair of scatterers. This is over and

beyond the ladder approximation to the intensity. It may be mentioned that although excellent

agreement was obtained between theory ad experiment when similar terms were neglected in the

computation of the coherent field, 5 this may not be the case for the intensity calculation. Recently,

an interesting enhanced backscattering phenomenon has been observed 8 ,22 ,2 3 and some analytical

work was tried to explain this using cyclic scattering and point scatterers. 10 However, the

experimental observations deal with scatterers large when compared with the incident wavelength,

12
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and therefore a detailed computation based on anisotropic scattering for finite size scatterers is

essential. From the published experimental results it is not possible to observe backscattering

enhancement when the scatterer size is small compared to the wavelength. It is also advisable to

p use the T-matrix for a pair of scatterers as mentioned in our earlier work. 1 1 In fact the so called

cyclic terms can all be summed if one replaces the infinite series in Eq. (27) with the T-matrix of a

pair of scatterers as given by.2 4 Equation (27) may hence be written diagrammatically as

" 1i!KiJo j(28)

,ewhere TJk, the two scatterer T- matrix has the following form

STj k = R( ro )TJ [ 1 -a(rjk) Tk (rkj) TJ -1 [ 1 +a (rjk) Tk R(rkj) R(- ro)

+ R( r. ) Tk [ 1 - G(rkj) TJ a(rjk) Tk ] -I [ 1 + a(rkj) TJ R(rjk) ]R(- ro ) (29)

where R( ro ) is the regular part of the translation matrix a( ro ), rjk = rj - rk and ro = (rj + rk)/2 .

We are now in a position to write an expression for V as given in Eq. (4) which is exact if

only two point correlations are retained. We emphasize that this is different from making

approximations to higher order statistics such as Kirkwood's superposition approximation for the

three point correlation function. To this end we substitute Eqs. (23) and (26) in Eqs. (15) and (16)

and the last two in Eq. (4) to yield

V=noX n [o f J TJ <aJ >j TJ TJ <a >j *drj

+ no2 f [J Tjik T k <k>k ] [ j TJ jk Tk < Ck>k ]*g(rjk) drj drk

+ +no3 if [TjJTjjkTk akrnTm<ocm>m I x

x [PJ TJ Gjk Tk Gkm Tm < am >m g(rjk) g(rkm) drj drk drm

.. (ladder diagrams)

no>kf [ k Tk < k>k [J TJ < >j] [g(rjk ) - I drj drk

4n 2 y f[Wk Tk akj T< ati>j [PTi Tj.D~~ ~~ C o y T k J< >j][ jT jk T k < (Xk >k ]* g(rjk) drj dr k

13
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+ no2 ff [ yk Tkkj TJ jk T k < c k >k x

x ['PJ TJ Crjk Tk Gkj TJ < j >j]* g(rjk) drj drk

+ ... (cyclic diagrams) (30)

Each term of the two series in Eq. (30) represents a certain order of scattering. For the same order

of scattering, the cyclic terms are proportional to a higher power in the number density. Thus at low

concentrations cyclic terms contribute less than the ladder terms to the the same order of scattering.

Equation (30) has been used in the computations presented in the next section.

VI. Numerical Results and Discussion

To check the validity of our formalism, we compared our incoherent intensity calculations

with the microwave experiments conducted by Beard et al. 16 The transmitted intensity was

calculated using the DBA as given in Eq. (6) where 0 = 00 represents the forward direction. This

calculation is based on the experimental set-up (see Fig. 1) which consists of a slab region

styrofoam container, for various concentrations of scatterers at the fixed frequency. For the case ka

U = 20.8 for tenuous scatterers with relative index of refraction 1.016 the computed results match

very well with measurements (see Fig. 2). Similar computations were also performed for

off-forward scattering and a good comparison is again presented in Fig. 3.

The contribution of different orders of scattering is also investigated for the propagation of an

electromagnetic wave through randomly distributed spherical ice particles (see Fig. 4). In this

calculation, the intensity in the far field of the scattering medium is computed and is normalized

with respect to the number density, receiving area and the distance D traveled by the wave in order

to consider the general nature of the problem without reference to specific measurements. Table I

gives the magnitudes of the different order scattered incoherent intensities in the forward direction
for two different concentrations at two different frequencies. The distorted Born approximation

J
uses only 1st (A) and 1st (B) terms described in the remark of Table I. Although the calculation

converges quite rapidly for this scattering medium at small and moderate frequencies (ka =0.1 and

1.0, respectively), no conclusion can be drawn when high frequencies and different scattering

14
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r

media are considered. Higher order terms in the intensity calculation not only increase the amount

of CPU time but also require knowledge of higher order statistics for densely distributed finite size

scatterers.

If the scatterers are not spherical in shape, the calculation of the scattered intensity for a dense

distriution of nonspherical scatterers, using spherical statistics, may deviate from measurement sW-..

by a considerable amount unless a correct pair correlation function, is employed in the calculation.

To show the effect of pair statistics on the intensity calculation, we have picked values of the

-- effective wavenumber from a previous investigation 13 and used them to compute the intensity and

show the results in Figs 5 and 6. The geometry of this problem is, again, described by Fig. 4. But

the scatterers are either oblate or prolate spheroids and the rotational axis symmetry for all scatterers

is parallel to the direction of the incident wave. The details in obtaining the appropriate pair

correlation function using Monte Carlo techniques have-been discussed by the authors. 13

As for the backscattered intensity, we have included the T-matrix of a pair of scatterers which

takes into account all the so called 'cyclic' terms and considers multiple scattering up to the second

order for the calculation of the incoherent intensity . Among three similar optical

experiments8,22,23 of laser light scattered by densely distributed latex particles in distilled water,

UAlbada's measurements are, in our opinion, of the best quality for comparison purposes. The

reason is partly that the receiver used has a very small field of view and, hence, gives a much better

angular resolution. The widths and the magnitudes of the backscattered intensity peak of our

computations compare favorably with those of Albada's experiments (see Fig. 7) for three different

number densities which have been converted to the corresponding volume fractions in our intensity

calculation. However, due to the truncation of the orders of scattering due to the tremendous

amount of CPU time required, we did not obtain a full match.

In a previous paper,5 the multiple scattered intensity was represented intuitively using

diagrams which included possibly all the complicated multiple scattering processes, whereas in the

present case, one can see that it also involves approximating highe-- order statistics in terms of the
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pair statistics. Without a priori knowledge of higher order statistics, one may be able to make

various approximations and, as a result, different diagrams can be generated but these nonunique

subsets of the intensity operator of the Bethe-Salpeter equation. As for the validity of the

approximations - can higher order statistics be satisfactorily approximated by lower order statistics

or should they be neglected - is still an open question.

Acknowledgement: This research was supported by the U.S. Army Research Office through

contract # DAAG-29-84-K-0 187 awarded to the Pennsylvania State University. The authors wish

to thank Dr. Walter Flood for helpful discussions.

References
1. Lord Rayleigh, "On the transmission of light through an atmosphere containing small particles

in suspension, and on the origin of the blue sky," Philos. Mag. 47, 375 (1899).

2. F.J. Dyson, "The radiation theories of Tomonaga, Schwinger, and Feynman," Phys. Rev. 75,
486 (1949).

3. E.E. Salpeter and H.A. Bethe, "A relativistic equation for bound-state problems," Phys. Rev.
84, 1232 (1951).

4. U. Frisch, "Wave propagation in random media," in Probabilistic Methods in Applied
Mathematics, edited by A.T. Bharucha-Reid, Academic, New York, 1968.

5. V.V. Varadan, Y. Ma and V,K. Varadan, "Propagation model including multiple fields for
discrete random media," J. Opt. Soc. Am. A2, 2195 (1985).

6 R.P. Feynman, "Space-time approach to nonrelativistic quantum mechanics, Rev. Modem.
Phys. 20, 367 (1948).

7. A. Ishimaru, Wave Propagation and Scattering in Random Media, Academic Press, New
York, 1978.

8. Y.Kuga and A. Ishimaru, "Retroreflectance from a dense distribution of spherical particles," J.
Opt. Soc. Am. Al, 831 (1984).

9. V. Twersky, "On propagation in random media of discrete scatterers," in Proceedings of
.ymposia in Applied Mathematics, vol. 16, American Mathematical Society, 1964.

10. L. Tsang and A. Ishimaru, "Theory of backscattering enhancement of random discrete
isotropic scatterers based on the summation of all ladder and cyclical terms," J. Opt. Soc. Am.
A2, 1331 (1985).

I V N Bnngi, T.A. Seliga, V.K. Varadan and V.V. Varadan, "Bulk propagation characteristics
of discrete random media," in Multiple Scattering and Waves in Random Media, edited by P.L.
Chow, WE. Kohler, and G.C. Papanicolaou, North-Holland, Amsterdam, 1981.

.1

I b

1%

%



Scattered Intensity of a Wave Propagating ... Ma, Varadan & Varadan

12. V.K. Varadan, V.N. Bringi, V.V. Varadan, and A. Ishimaru, "Multiple scattering theory for
waves in discrete random media and comparison with experiments," Radio Sci. 18, 321
(1983).

13. V.V. Varadan, V.K. Varadan, Y. Ma and W.A. Steele, "Effects of nonspherical statistics on
EM wave propagation in discrete random media," Radio Science 22, 491 (1987).

14. V. Twersky, "Multiple scattering of sound by correlated monolayers," J. Acoust. Soc. Am.
F73, 68 (1983).

15. V. Twersky, "On scattering and reflection of sound by rough surfaces," J. Acoust. Soc. Am.
29, 209 (1957).

16. C.I. Beard, T.H. Kays and V. Twersky, "Scattered intensities for random distributions -
microwave data and optical applications," App. Opt. 4, 1299 (1965).

17. V.K. Varadan and V.V. Varadan (Eds.), Acoustic, Electromagnetic and Elastic Wave
Scattering - Focus on the T-matrix Approach, Pergamon, New York, 1980.

18. M. Lax, "Multiple scattering of waves. H. The effective field in dense systems," Phys. Rev.
88, 621 (1952).

19. R.C. Bourret, "Propagation of randomly perturbed fields," Can. J. Phys. 40, 782 (1962).

20. K. Furutsu, "On the statistical theory of electromagnetic waves in a fluctuating medium," J.
Res. Natl. Bur. Standards, D 67, 303 (1963).

. 21. V.I. Tatarski, Wave Propagation in a Turbulent Medium" McGraw-Hill, New Yoik, 1961.

22. M.P. Van Albada and A. Lagendijk, "Observation of weak localization of light "n a random
medium," Phys. Rev. Lett. 55, 2692 (1985).

23. P.E. Wolf and G. Maret, "Weak localization and coherent backscattering of photons in
disordered media," Phys. Rev. Lett. 55, 2696 (1985).

24. V.V. Varadan and V.K. .Varadan, "Configurations with finite numbers of scatterers - A
self-consistent T-matrix approach," J. Acoust. Soc. Am. 70, 213 (1981).

17

.. . ... a



Scattered Intensity of a Wave Propagating ... Ma. Varadan & Varadan

Table I Comparison of Orders of Scattering

(0 = 0 , ka = 0.1)

c =0.05 c = 0.20

Order Normalized Intensity Order Normalized Intensity

lst (A) 0.1796 x 10-6  1st (A) 0.1839 x 10-6

(B) -0.6050 x 10-7  (B) -0.1469 x 10-6

2nd (A) 0.7689 x 10.15 2nd (A) 0.1076 x 10 13

(B) 0.7544 x 10- 15  (B) 0.1062 x 10- 13

( 00 , ka= 1.0)

c =0.05 c = 0.20

Order Normalized Intensity Order Normalized Intensity

1st (A) 0.3009 1st (A) 0.2999

(B) -0.1016 (B) -0.2395

2nd (A) 0.8369 x l0-3  2nd (A) 0.1123 x 10-1

(B) 0.8665 x 10-3  (B) 0.1160 x 10-1

3rd (A) 0.1419 x 10-7  3rd (A) 0.6044 x 10-3

(B) 0.4653 x 10-5  (B) 0.7246 x 10-3

4th (A) 0.6054 x 10-10 4th (A) 0.3428 x 10-4

(B) 0.2777 x 10-6  (B) 0.4759 x 10-4

t.

Remark: .4-4-----
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Fig. I Geometry of scattering from layered media.
(In Beard's experimentoe= 6 3= 30

T = 69.9 cm, R = 264 cm, D = 25.4 cm)

Fig. 2 Transmitted incoherent intensity vs. concentration.

f., Fig. 3 Off-forward scattering of incoherent intensity for different

concentrations.

Fig. 4 Geometry of scattering from a volume of scatterers.

Fig. 5 Normalized incoherent intensity of EM wave scattered by oblate

ice spheroids in free space.

Fig. 6 Normalized incoherent intensity of EM wave scattered by prolate

ice spheroids in free space.

Fig. 7 Backscattered intensity for latex spheres in water (0 mrad is

the backscattering direction).
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